No CrossRef data available.
Article contents
On the Bound of the C* Exponential Length
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let $X$ be a compact Hausdorff space. In this paper, we give an example to show that there is $u\,\in \,C\left( X \right)\,\otimes \,{{M}_{n}}$ with $\det \left( u\left( x \right) \right)\,=\,1$ for all $x\,\in \,X$ and $u{{\tilde{\ }}_{h}}1$ such that the ${{C}^{*}}$ exponential length of $u$ (denoted by $\text{cel}\left( u \right)$) cannot be controlled by $\pi$. Moreover, in simple inductive limit ${{C}^{*}}$-algebras, similar examples also exist.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2014
References
[1]
Bhatia, R. and Davis, C., A bound for the spectral variation of a unitary operator.Linear and Multilinear Algebra
15 (1984), no. 1, 71–76. http://dx.doi.org/10.1080/03081088408817578
Google Scholar
[2]
Choi, M. D. and Elliott, G. A., Density of the self-adjoint elements with finite spectrum in an irrational rotation C*-algebra.Math. Scand.
67 (1990), no. 1, 73–86.Google Scholar
[3]
Elliott, G. A., Gong, G., and Li, L., On the classification of simple inductive limit C*-algebras. II. The isomorphism theorem. Invent. Math.
168 (2007) no. 2, 249–320. http://dx.doi.org/10.1007/s00222-006-0033-y
Google Scholar
[4]
Gong, G. and Lin, H., The exponential rank of inductive limit C*-algebras. Math. Scand.
71 (1992), no. 2, 301–319.Google Scholar
[5]
Goodearl, K. R., Notes on a class of simple C*-algebras with real rank zero.Publ. Mat.
36 (1992), no. 2A, 637–654. http://dx.doi.org/10.5565/PUBLMAT 362A92 23
Google Scholar
[6]
Guillemin, V. and Pollack, A., Differential topology. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1974.Google Scholar
[7]
Kadison, R. V. and Ringrose, J. R., Fundamentals of the theory of operator algebras, Vol. 1, Elementary theory. Pure and Applied Mathematics, Academic Press, New York, 1983.Google Scholar
[8]
Lin, H., Exponential rank of C*-algebras with real rank zero and Brown-Pedersen conjectures.
J. Funct. Anal.
114 (1993) no. 1, 1–11. http://dx.doi.org/10.1006/jfan.1993.1060
Google Scholar
[9]
Lin, H., Exponentials in simple Z-stable C*-algebras.J. Funct. Anal.,
266 (2014), no. 2, 754–791. http://dx.doi.org/10.1016/j.jfa.2013.09.023
Google Scholar
[10]
Lin, H., Generalized Weyl-von Neumann theorems.Internat. J. Math.
2 (1991), no. 6, 725–739. http://dx.doi.org/10.1142/S0129167X91000405
Google Scholar
[11]
Lin, H., Generalized Weyl-von Neumann theorems. II.Math. Scand.
77 (1995), no. 1, 129–147.Google Scholar
[12]
Lin, H., Simple nuclear C*-algebras of tracial topological rank one.J. Funct. Anal.
251 (2007), no. 2, 601–679. http://dx.doi.org/10.1016/j.jfa.2007.06.016
Google Scholar
[13]
Phillips, N. C., Simple C*-algebras with the property weak (FU).Math. Scand.
69 (1991), no. 1, 127–151.Google Scholar
[14]
Phillips, N. C., How many exponentials?
Amer. J. Math.
116 (1994), no. 6, 1513–1543. http://dx.doi.org/10.2307/2375057
Google Scholar
[15]
Phillips, N. C., Reduction of exponential rank in direct limits of C*-algebras.Canad. J. Math.
46 (1994), no. 4, 818–853. http://dx.doi.org/10.4153/CJM-1994-047-7
Google Scholar
[16]
Phillips, N. C., Approximation by unitaries with finite spectrum in purely infinite C*-algebras.J. Funct. Anal.
120 (1994), no. 1, 98–106. http://dx.doi.org/10.1006/jfan.1994.1025
Google Scholar
[17]
Phillips, N. C., Exponential length and traces.Proc. Roy. Soc. Edinburgh Sect. A
125 (1995), no. 1, 13–29. http://dx.doi.org/10.1017/S0308210500030730
Google Scholar
[18]
Phillips, N. C. and Ringrose, J. R., Exponential rank in operator algebras. In: Current topics in operator algebras (Nara, 1990),World Sci. Publ., River Edge, NJ, 1991, pp. 395–413.Google Scholar
[19]
Ringrose, J. R., Exponential length and exponential rank in C*-algebras.Proc. Roy. Soc. Edinburgh Sect. A
121 (1992), no. 1–2, 55–71. http://dx.doi.org/10.1017/S0308210500014141
Google Scholar
[20]
Thomsen, K., Homomorphisms between finite direct sums of circle algebra.Linear and Multilinear Algebra
32 (1992), 33–50. http://dx.doi.org/10.1080/03081089208818145
Google Scholar
[21]
Thomsen, K., On the reduced C*-exponential length. In: Operator algebras and quantum field theory (Rome, 1996), Int. Press, Cambridge, MA, 1997, pp. 59–64.Google Scholar
[22]
Weyl, H., Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen.Math. Ann.
71 (1912), no. 4, 441–479. http://dx.doi.org/10.1007/BF01456804
Google Scholar
[23]
Zhang, S., On the exponential rank and exponential length of C*-algebras.J. Operator Theory
28 (1992), no. 2, 337–355.Google Scholar
[24]
Zhang, S., Exponential rank and exponential length of operators on Hilbert C*-algebras.Ann. of Math.
137 (1993), no. 1, 129–144. http://dx.doi.org/10.2307/2946620
Google Scholar
[25]
Zhang, S., Factorizations of invertible operators and K-theory of C*-algebras.Bull. Amer. Math. Soc.
28 (1993), no. 1, 75–83. http://dx.doi.org/10.1090/S0273-0979-1993-00334-3
Google Scholar
You have
Access