Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T14:51:12.048Z Has data issue: false hasContentIssue false

On the Regularity of the s-Differential Metric

Published online by Cambridge University Press:  20 November 2018

Javad Mashreghi
Affiliation:
Département de mathématiques, et de statistique, Université Laval, Québec, QC, G1K 7P4 e-mail: Javad.Mashreghi@mat.ulaval.ca
Mohamad R. Pouryayevali
Affiliation:
Department of Mathematics, University of Isfahan, P.O. Box 81745-163, Isfahan, Iran e-mail: pourya@sci.ui.ac.ir
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that the injective Kobayashi–Royden differential metric, as defined by Hahn, is upper semicontinous.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2005

References

[1] Hahn, K. T., Some remarks on a new pseudo differential metric. Ann. Polon. Math. 39(1981), 7181.Google Scholar
[2] Jarnicki, M. and Pflug, P., Invariant Distances and Metrics in Complex Analysis. de Gruyter Expositions in Mathematics 9, de Gruyter, Berlin, 1993.Google Scholar
[3] Kobayashi, S., A new invariant infinitesimal metric. Internat. J. Math. 1(1990), 8390.Google Scholar
[4] Kobayashi, S., Hyperbolic Manifolds and Holomorphic Mappings. Pure and Applied Mathematics 2, Marcel Dekker, New York (1970).Google Scholar
[5] Overholt, M., Injective hyperbolicity of domains. Ann. Polon Math. 62(1995), 7982.Google Scholar
[6] Royden, H., Remarks on the Kobayashi metric. Lecture Notes in Math. 185, Springer-Verlag, Berlin, 1971, pp. 125137.Google Scholar
[7] Venturini, S., Pseudodistances and pseudometrics on real and complex manifolds. Ann.Mat. Pura. Appl. 154(1989), 385402.Google Scholar
[8] Vesentini, E., Injective hyperbolicity. Ricerche. Mat. 36(1987), 99109.Google Scholar
[9] Vigué, J. P., Une remarque sur l’hyperbolicité injective. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 83(1989), 5761.Google Scholar