Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Coxeter, H. S. M.
1968.
Loxodromic sequences of tangent spheres.
Aequationes Mathematicae,
Vol. 1,
Issue. 1-2,
p.
104.
Boyd, David W.
1970.
Lower bounds for the disk packing constant.
Mathematics of Computation,
Vol. 24,
Issue. 111,
p.
697.
Boyd, David W.
1970.
Osculatory Packings by Spheres.
Canadian Mathematical Bulletin,
Vol. 13,
Issue. 1,
p.
59.
Boyd, David W.
1971.
The disk-packing constant.
Aequationes Mathematicae,
Vol. 7,
Issue. 2-3,
p.
182.
Boyd, David W.
1972.
Disk Packings which have Non-Extreme Exponents.
Canadian Mathematical Bulletin,
Vol. 15,
Issue. 3,
p.
341.
Boyd, David W.
1973.
The residual set dimension of the Apollonian packing.
Mathematika,
Vol. 20,
Issue. 2,
p.
170.
Boyd, David W.
1973.
Improved bounds for the disk-packing constant.
Aequationes Mathematicae,
Vol. 9,
Issue. 1,
p.
99.
Wilker, J. B.
1977.
Sizing up a solid packing.
Periodica Mathematica Hungarica,
Vol. 8,
Issue. 2,
p.
117.
Tóth, G. Fejes
1983.
Convexity and Its Applications.
p.
318.
Tricot, Claude
1984.
A new proof for the residual set dimension of the apollonian packing.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 96,
Issue. 3,
p.
413.
Graham, Ronald L.
Lagarias, Jeffrey C.
Mallows, Colin L.
Wilks, Allan R.
and
Yan, Catherine H.
2003.
Apollonian circle packings: number theory.
Journal of Number Theory,
Vol. 100,
Issue. 1,
p.
1.
Maio, Steven
and
Ntalampekos, Dimitrios
2022.
On the Hausdorff dimension of the residual set of a packing by smooth curves.
Journal of the London Mathematical Society,
Vol. 105,
Issue. 3,
p.
1752.
Lautzenheiser, Daniel
2024.
The residual set dimension of a generalized apollonian packing.
Geometriae Dedicata,
Vol. 218,
Issue. 2,