No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Given an odd surjective Galois representation $\varrho :{{\text{G}}_{\mathbb{Q}}}\to \text{PG}{{\text{L}}_{2}}\left( {{\mathbb{F}}_{3}} \right)$ and a positive integer $N$, there exists a twisted modular curve $X{{\left( N,3 \right)}_{\varrho }}$ defined over $\mathbb{Q}$ whose rational points classify the quadratic $\mathbb{Q}$-curves of degree $N$ realizing $\varrho$. This paper gives a method to provide an explicit plane quartic model for this curve in the genus-three case $N=5$.