Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T11:04:43.795Z Has data issue: false hasContentIssue false

Prescribed k-symmetric curvature hypersurfaces in de Sitter space

Published online by Cambridge University Press:  26 November 2020

Daniel Ballesteros-Chávez
Affiliation:
Faculty of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44-100, Gliwice, Polande-mail:danielyho@yahoo.com
Wilhelm Klingenberg
Affiliation:
Department of Mathematical Sciences, University of Durham, DurhamDH1 3LE, United Kingdome-mail:wilhelm.klingenberg@durham.ac.uk
Ben Lambert*
Affiliation:
School of Electronics, Computing and Mathematics, University of Derby, Markeaton Street, DerbyDE22 3AW, United Kingdom

Abstract

We prove the existence of compact spacelike hypersurfaces with prescribed k-curvature in de Sitter space, where the prescription function depends on both space and the tilt function.

Type
Article
Copyright
© Canadian Mathematical Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

D.B-C. was supported by CONACYT-Doctoral scholarship no. 411485. B.L. was supported by a Leverhulme Trust Research Project Grant RPG-2016-174.

References

Ballesteros-Chávez, D., Curvature estimates of spacelike surfaces in deSitter space. Preprint, 2019. https://arxiv.org/pdf/1905.09587.pdf Google Scholar
Barbosa, J. L. M., Lira, J. H. S., and Oliker, V. I., A priori estimates for starshaped compact hypersurfaces with prescribed $m$ th curvature function in space forms. In: Nonlinear problems in mathematical physics and related topics, I, Int. Math. Ser. (N. Y.), 1, Kluwer/Plenum, New York, 2002, pp. 3552.Google Scholar
Bartnik, R. and Simon, L., Spacelike hypersurfaces with prescribed boundary values and mean curvature . Comm. Math. Phys. 87(1982), 131152.CrossRefGoogle Scholar
Caffarelli, L., Nirenberg, L., and Spruck, J., The Dirichlet problem for nonlinear second order elliptic equations. III. Functions of the eigenvalues of the Hessian . Acta Math. 155(1985), 261301. https://doi.org/10.1007/BF02392544 CrossRefGoogle Scholar
Caffarelli, L., Nirenberg, L., and Spruck, J., Nonlinear second order elliptic equations. IV. Starshaped compact Weingarten hypersurfaces. In: Current topics in partial differential equations, Kinokuniya, Tokyo, 1986, pp. 126.Google Scholar
Evans, L. C., Classical solutions of fully nonlinear, convex, second order elliptic equations . Comm. Pure Appl. Math. 35(1982), 333363. https://doi.org/10.1002/cpa.3160350303 CrossRefGoogle Scholar
Gerhardt, C., Hypersurfaces of prescribed curvature in Lorentzian manifolds . Indiana Univ. Math. J. 49(2000), 11251153. https://doi.org/10.1512/iumj.2000.49.1861 CrossRefGoogle Scholar
Gerhardt, C., $H$ -surfaces in Lorentzian manifolds . Comm. Math. Phys. 89(1983), 523553.CrossRefGoogle Scholar
Gerhardt, C., Hypersurfaces of prescribed Weingarten curvature . Math. Z. 224(1997), 167194. https://doi.org/10.1007/PL00004580 CrossRefGoogle Scholar
Guan, P., Li, J., and Li, Y., Hypersurfaces of prescribed curvature measure . Duke Math. J. 161(2012), 19271942. https://doi.org/10.1215/00127094-1645550 CrossRefGoogle Scholar
Guan, P., Ren, C., and Wang, Z., Global $\;{C}^2$ estimates for convex solutions of curvature equations. Comm. Pure Appl. Math. 68(2015), 12871325. https://doi.org/10.1002/cpa.21528 CrossRefGoogle Scholar
Huang, Y., Curvature estimates of hypersurfaces in the Minkowski space . Chin. Ann. Math. Ser. B 34(2013), 753764. https://doi.org/10.1007/s11401-013-0789-5 CrossRefGoogle Scholar
Jin, Q. and Li, Y., Starshaped compact hypersurfaces with prescribed $\;k$ -th mean curvature in hyperbolic space . Discrete Contin. Dyn. Syst. 15(2006), 367377. https://doi.org/10.3934/dcds.2006.15.367 CrossRefGoogle Scholar
Krylov, N. V., Boundedly nonhomogeneous elliptic and parabolic equations in a domain . Izv. Nauk. SSSR. Ser. Mat. 47(1983), 75108.Google Scholar
Li, Y., Degree theory for second order nonlinear elliptic operators and its applications . Comm. Partial Differential Equations 14(1989), 15411578. https://doi.org/10.1080/03605308908820666 Google Scholar
Li, Y. and Oliker, V. I., Starshaped compact hypersurfaces with prescribed $\;m$ -th mean curvature in elliptic space . J. Partial Differential Equations 15(2002), 6880.Google Scholar
Sheng, W., Urbas, J., and Wang, X.-J., Interior curvature bounds for a class of curvature equations . Duke Math. J. 123(2004), 235264. https://doi.org/10.1215/S0012-7094-04-12321-8 CrossRefGoogle Scholar
Urbas, J., Interior curvature bounds for spacelike hypersurfaces of prescribed $\;k$ -th mean curvature . Comm. Anal. Geom. 11(2003), 235261.CrossRefGoogle Scholar
Whiteley, J. N., On Newton’s inequality for real polynomials . Amer. Math. Monthly 76(1969), 905909. https://doi.org/10.2307/2317943 CrossRefGoogle Scholar