Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T11:53:44.775Z Has data issue: false hasContentIssue false

Presentation of an Iwasawa algebra: The pro-p Iwahori of simple, simply connected, split groups

Published online by Cambridge University Press:  09 January 2025

Aranya Lahiri
Affiliation:
Department of Mathematics, Indiana University, Bloomington, 831 E 3rd St, Bloomington, IN 47405, United States and University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, United States e-mail: arlahiri@ucsd.edu
Jishnu Ray*
Affiliation:
Department of Mathematics, Harish Chandra Research Institute, A CI of Homi Bhabha National Institute, Chhatnag Road, Jhunsi, Prayagraj (Allahabad) 211 019, India

Abstract

In this article, we generalize results of Clozel and Ray (for $SL_2$ and $SL_n$, respectively) to give explicit ring-theoretic presentation in terms of a complete set of generators and relations of the Iwasawa algebra of the pro-p Iwahori subgroup of a simple, simply connected, split group $\mathbf {G}$ over ${{\mathbb Q}_p}$.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The second author is supported by the Inspire Research Grant, Department of Science and Technology, Govt. of India.

References

Ardakov, K. and Brown, K., Ring-theoretic properties of Iwasawa algebras: A survey . Doc Math. Extra Volume: John H. Coates’ Sixtieth Birthday, (2006), 733.Google Scholar
Clozel, L., Presentation of an Iwasawa algebra: The case of ${\varGamma}_1 SL(2,{\mathbb{Z}}_p)$ . Doc. Math. 16(2011), 545559.CrossRefGoogle Scholar
Clozel, L., Globally analytic $p$ -adic representations of the pro- $p$ -Iwahori subgroup of $GL(2)$ and base change, I: Iwasawa algebras and a base change map. Bull. Iranian Math. Soc. 43(2017), no. 4, 5576.Google Scholar
Clozel, L., Globally analytic  $p$ -adic representations of the pro- $p$ Iwahori subgroup of $GL(2)$ and base change, II: A Steinberg tensor product theorem . In: J. W. Cogdell, G. Harder, S. Kudla, F. Shahidi (eds.), Cohomology of arithmetic groups, Springer Proceedings in Mathematics and Statistics, 245, Springer, Cham, 2018, pp. 133.Google Scholar
Dixon, J. D., du Sautoy, M. P. F., Mann, A., and Segal, D., Analytic pro- $p$ groups, 2nd ed., Cambridge Studies in Advanced Mathematics, 61, Cambridge University Press, Cambridge, 1999.Google Scholar
Lahiri, A. and Sorensen, C., Rigid vectors in $p$ -adic principal series representations. Isr. J. Math. 259 (2024), 427459. https://doi.org/10.1007/s11856-023-2495-7.CrossRefGoogle Scholar
Ollivier, R. and Schneider, P., The modular pro- $p$ Iwahori–Hecke Ext-algebra. In: A. Aizenbud, D. Gourevitch, D. Kazhdan, E. M. Lapid (eds.), Representations of reductive groups, Proceedings of Symposia in Pure Mathematics, 101, American Mathematical Society, Providence, RI, 2019, pp 255308.CrossRefGoogle Scholar
Papi, P., A characterization of a special ordering in a root system . Proc. Amer. Math. Soc. 120(1994), no. 3, 661665.CrossRefGoogle Scholar
Ray, J., Explicit ring-theoretic presentation of Iwasawa algebras . C. R. Math. 356 (2018), no. 11, 10751080.CrossRefGoogle Scholar
Ray, J., Explicit presentation of an Iwasawa algebra: the case of pro- $p$ Iwahori subgroup of $\mathrm{SL}_n({\mathbb{Z}}_p)$ . Forum Math. 32(2020), no. 2, 319338.CrossRefGoogle Scholar
Schneider, P., $p$ -adic Lie groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],344, Springer, Heidelberg, 2011.CrossRefGoogle Scholar
Steinberg, R., Lectures on Chevalley groups, University Lecture Series, 66, American Mathematical Society, Providence, RI, 2016. Notes prepared by John Faulkner and Robert Wilson, Revised and corrected edition of the 1968 original [MR0466335], With a foreword by Robert R. Snapp.CrossRefGoogle Scholar
Wang-Erickson, C., Higher Yoneda product structures and Iwasawa algebras modulo $p$ . Preprint, 2021. arXiv:2101.06295.Google Scholar