Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T10:05:31.306Z Has data issue: false hasContentIssue false

Quantum Unique Ergodicity on Locally Symmetric Spaces: the Degenerate Lift

Published online by Cambridge University Press:  20 November 2018

Lior Silberman*
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2 e-mail: lior@math.ubc.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Given a measure ${{\bar{\mu }}_{\infty }}$ on a locally symmetric space $Y=\Gamma \backslash G/K$ obtained as a weak-$*$ limit of probability measures associated with eigenfunctions of the ring of invariant differential operators, we construct a measure ${{\bar{\mu }}_{\infty }}$ on the homogeneous space $X=\Gamma \backslash G$ that lifts ${{\bar{\mu }}_{\infty }}$ and is invariant by a connected subgroup ${{A}_{1}}\subset A$ of positive dimension, where $G=NAK$ is an Iwasawa decomposition. If the functions are, in addition, eigenfunctions of the Hecke operators, then ${{\bar{\mu }}_{\infty }}$ is also the limit of measures associated with Hecke eigenfunctions on $X$. This generalizes results of the author with A. Venkatesh in the case where the spectral parameters stay away from the walls of the Weyl chamber.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2015

References

[1] Anantharaman, N., Entropy and the localization of eigenfunctions. Ann. of Math.(2) 168(2008), no. 2, 435475. http://dx.doi.Org/1 0.4007/annals.2008.1 68.435 Google Scholar
[2] Anantharaman, N. and Silberman, L., A Haar component for quantum limits on locally symmetric spaces. Israel J. Math. 195(2013), no. 1, 393447. http://dx.doi.Org/10.1007/s11 856-012-0133-x Google Scholar
[3] Anantharaman, N. and Zelditch, S., Patterson-Sullivan distributions and quantum ergodicity. Ann. Henri Poincaré 8(2007), no. 2,361426. http://dx.doi.org/10.1007/s00023-006-0311-7 Google Scholar
[4] Arthur, J., Intertwining operators and residues. I. Weighted characters. J. Funct. Anal. 84(1989), no. 1, 1984. http://dx.doi.Org/10.101 6/0022-1236(89)90110-9 Google Scholar
[5] Bourgain, J. and Lindenstrauss, E., Entropy of quantum limits. Comm. Math. Phys. 233(2003), no. 1, 153171. http://dx.doi.org/10.1007/s00220-002-0770-8 Google Scholar
[6] Colin de Verdière, Y., Ergodicité et fonctions propres du laplacien. Comm. Math. Phys. 102(1985), no. 3, 497502. http://dx.doi.org/10.1007/BF01209296 Google Scholar
[7] Einsiedler, M. and Lindenstrauss, E., Onmeasures invariant under diagonalizable actions: the rank-one case and the general low-entropy method. J. Mod. Dyn. 2(2008), no. 1, 83128.Google Scholar
[8] Evans, L. C. and Zworski, M., Lectures on semiclassical analysis, (version 0.2) http://math.berkeley.edu/-evans/sem iclassical.pdf Google Scholar
[9] Hansen, S., Hilgert, J., and Schroder, M., Patterson-Sullivan distributions in higher rank. Math. Z. 272(2012), no. 1-2, :607-643. http://dx.doi.org/10.1007/s00209-011-0952-1 Google Scholar
[10] Knapp, A. W. and Stein, E. M., Intertwining operators for semisimple groups. Ann. of Math.(2) 93(1971), 489578. http://dx.doi.Org/10.2307/1 970887 Google Scholar
[11] Knapp, A. W., Representation theory of semisimple groups. An overview based on examples. Princeton Mathematical Series, 36, Princeton University Press, Princeton, NJ, 1986.Google Scholar
[12] Lindenstrauss, E., On quantum unique ergodicity for F\H x H. Internat. Math. Res. Notices 2001, no. 17, 913933.Google Scholar
[13] Lindenstrauss, E. , Invariant measures and arithmetic quantum unique ergodicity. Ann. of Math.(2) 163(2006), 165219. http://dx.doi.org/10.4007/annals.2006.163.165 Google Scholar
[14] Maucourant, F., A nonhomogeneous orbit closure of a diagonal subgroup. Ann. of Math.(2) 171(2010), no. 1, 557570. http://dx.doi.org/10.4007/annals.2010.171.557 Google Scholar
[15] Rudnick, Z. and Sarnak, P., The behaviour of eigenstates of arithmetic hyperbolic manifolds. Comm. Math. Phys. 161(1994), no. 1, 195213. http://dx.doi.Org/10.1007/BF0209941 8 Google Scholar
[16] Silberman, L. and Venkatesh, A., Entropy bounds for Heckeeigenfunctions on division algebras. In revision.Google Scholar
[17] Silberman, L. and Venkatesh, A. , Quantum unique ergodicity for locally symmetric spaces. Geom. Funct. Anal. 17(2007), no. 3, 960998. http://dx.doi.Org/1 0.1007/s00039-007-0611 -1 Google Scholar
[18] ShnireFman, A. I., Ergodic properties of eigenfunctions. Uspekhi Mat. Nauk. 29(1974), no. 6(180), 181182.Google Scholar
[19] Soundararajan, K., Quantum unique ergodicity for SL2(Z)\HL Ann. of Math. (2) 172(2010), no. 2, 15291538.Google Scholar
[20] Wolpert, S. A., Semiclassical limits for the hyperbolic plane. Duke Math. J. 108(2001), no. 3, 449509. http://dx.doi.Org/10.1215/S0012-7094-01-10833-8 Google Scholar
[21] Zelditch, S., Pseudodifferential analysis on hyperbolic surfaces. J. Funct. Anal. 68(1986), no. 1, 72105. http://dx.doi.Org/1 0.101 6/0022-1236(86)90058-3 Google Scholar
[22] Zelditch, S., Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55(1987), no. 4, 919941. http://dx.doi.org/10.1215/S0012-7094-87-05546-3 Google Scholar
[23] Zelditch, S., The averaging method and ergodic theory for pseudo-differential operators on compact hyperbolic surfaces. J. Funct. Anal. 82(1989), 3868. http://dx.doi.org/! 0.101 6/0022-1236(89)90091 -8 Google Scholar