No CrossRef data available.
Article contents
Quasi-copure Submodules
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
All rings are commutative with identity, and all modules are unital. In this paper we introduce the concept of a quasi-copure submodule of a multiplication $R$-module $M$ and will give some results about it. We give some properties of the tensor product of finitely generated faithful multiplication modules.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2016
References
[1]
Ali, M. M., 1/2 cancellation modules and homogeneous idealization. IL
Comm. Algebra
36(2008), 3842–3864. http://dx.doi.Org/10.1080/00927870802160826
Google Scholar
[2]
Ali, M. M., Multiplication modules and tensor product.
Beitrâge Algebra Geom.
47(2006), no. 2, 305–327.Google Scholar
[3]
Ali, M. M., Some remarks on Multiplication and flat modules.
J. Commut. Algebra
4(2012), no. 1, 1–27. http://dx.doi.Org/10.121 6/JCA-2O12-4-1-1
Google Scholar
[4]
Ali, M. M., Some remarks on multiplication and projective modules. IL
Comm. Algebra
41(2013), 195–214. http://dx.doi.Org/10.1080/00927872.2011.628724
Google Scholar
[5]
Ansari-Toroghy, H. and Farshadifar, F.. On comultiplication modules.
Korean Ann Math.
25(2008), no. 1-2, 57–66.Google Scholar
[6]
Barnard, A. D., Multiplication modules.
J. Algebra
71(1981), 174–178. http://dx.doi.Org/10.101 6/0021-8693(81)90112-5
Google Scholar
[7]
El-Bast, Z. A. and Smith, P. F., Multiplication modules.
Comm. Algebra
16(1988), 755–779. http://dx.doi.Org/10.1080/00927878808823601
Google Scholar
[8]
Faith, C., Algebra I: Rings, modules, and categories. Grundlehren der Mathematischen Wissenschaften, 190, Springer-Verlag, Berlin-New York, 1981.Google Scholar
[9]
McCasland, R. L. and Moore, M. E., On radicals of finitely generated modules.
Canad. Math. Bull.
29(1986), no. 1, 37–39. http://dx.doi.Org/10.4153/CMB-1986-006-7
Google Scholar
[10]
Naoum, A. G. and Al-Alwan, F. H., Dedekind modules.
Comm. Algebra
24(1996), no. 2. 397–412. http://dx.doi.Org/10.1080/00927879608825576
Google Scholar
[11]
Smith, P. F., Some remarks on multiplication modules.
Arch. Math. (Basel)
50(1988), 223–235. http://dx.doi.Org/10.1007/BF01187738
Google Scholar
You have
Access