Published online by Cambridge University Press: 20 November 2018
The relationship between the representation theory of the full linear group GL(d) of all non-singular linear transformations of degree d over a field of characteristic zero and that of the symmetric group Sn goes back to Schur and has been expounded by Weyl in his classical groups, [4; cf also 2 and 3]. More and more, the significance of continuous groups for modern physics is being pressed on the attention of mathematicians, and it seems worth recording a remark made to the author by Philip Hall in Edmonton.
As is well known, the irreducible representations of Sn are obtainable from the Young diagrams [λ]=[λ1, λ2 ,..., λr] consisting of λ1 nodes in the first row, λ2 in the second row, etc., where λ1≥λ2≥ ... ≥λr and Σ λi = n. If we denote the jth node in the ith row of [λ] by (i,j) then those nodes to the right of and below (i,j), constitute, along with the (i,j) node itself, the (i,j)-hook of length hij.