Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T12:48:31.176Z Has data issue: false hasContentIssue false

A Remark on Separable Orders

Published online by Cambridge University Press:  20 November 2018

Klaus W. Roggenkamp*
Affiliation:
Université de Montréal
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

K = algebraic number field,

R = algebraic integers in K,

A = finite dimensional semi-simple K-algebra,

A. = simple K-algebra,

i = 1,…, n,

Ki = center of Ai, = 1,, n,

G = R-order in A,

Ri = G ∩ ki.

All modules under consideration are finitely generated left modules. A G-lattice is a G-module which is R-torsion-free.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1969

References

1. Auslander, M. and Goldman, O., The Brauer group of a commutative ring. Trans. Am. Math. Soc. 97 (1960) 367409.Google Scholar
2. Curtis, C. W. and Reiner, I., Representation theory of finite groups and associative algebras. (Interscience, New York, 1962)Google Scholar
3. Hasse, H., Über p-adische Schiefkörper und ihre Bedeurung fur die Arithmetik hyperkomplexer Zahlsysteme. Math. Ann. 104 (1931) 495534.Google Scholar
4. Higman, D. G., Representations of orders over Dedekind domains. Canad. J. Math. 12 (1960) 107125.Google Scholar
5. Maranda, J. M., On the equivalence of representations of finite groups by groups of automorphisms of modules over Dedekind rings. Canad. J. Math. 7 (1955) 516526.Google Scholar