Article contents
Remarks on a Problem of Obreanu
Published online by Cambridge University Press: 20 November 2018
Extract
Let a1 < a2 < … be any sequence of integers. Assume that the infinite sequence of numbers un satisfies the following condition: To every ɛ > 0 there is an no = no (ɛ) such that for all n > no and all k
1
Obreanu asked (Problem P. 35 Can. Math. Bull.) under what conditions on the sequence a1 < a2 < … does (1) imply that the sequence u is convergent. N. G. de Bruijn and P. Erdos proved that a necessary and sufficient condition for (1) to imply the convergence of un is that the sequence {an} be infinite and that the greatest common divisor of the a1 should be 1.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1963
- 2
- Cited by