Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Cimprič, J.
2011.
Archimedean operator-theoretic Positivstellensätze.
Journal of Functional Analysis,
Vol. 260,
Issue. 10,
p.
3132.
Cimprič, Jakob
2011.
Noncommutative Positivstellensätze for pairs representation-vector.
Positivity,
Vol. 15,
Issue. 3,
p.
481.
Ozawa, Narutaka
2013.
About the Connes embedding conjecture.
Japanese Journal of Mathematics,
Vol. 8,
Issue. 1,
p.
147.
Netzer, Tim
and
Thom, Andreas
2013.
Real closed separation theorems and applications to group algebras.
Pacific Journal of Mathematics,
Vol. 263,
Issue. 2,
p.
435.
Netzer, Tim
and
Thom, Andreas
2014.
Hyperbolic Polynomials and Generalized Clifford Algebras.
Discrete & Computational Geometry,
Vol. 51,
Issue. 4,
p.
802.
Công-Trình, Lê
2015.
Some Positivstellensätze for polynomial matrices.
Positivity,
Vol. 19,
Issue. 3,
p.
513.
Alekseev, Vadim
Netzer, Tim
and
Thom, Andreas
2019.
Quadratic modules, 𝐶*-algebras, and free convexity.
Transactions of the American Mathematical Society,
Vol. 372,
Issue. 11,
p.
7525.
Bader, Uri
and
Nowak, Piotr W.
2020.
Group algebra criteria for vanishing of cohomology.
Journal of Functional Analysis,
Vol. 279,
Issue. 11,
p.
108730.
Dinh, Trung Hoa
Ho, Minh Toan
and
Le, Cong Trinh
2021.
Positivstellensätze for polynomial matrices.
Positivity,
Vol. 25,
Issue. 4,
p.
1295.
Schötz, Matthias
2021.
Equivalence of order and algebraic properties in ordered $$^*$$-algebras.
Positivity,
Vol. 25,
Issue. 3,
p.
883.
Schötz, Matthias
2023.
Universal continuous calculus for Su*‐algebras.
Mathematische Nachrichten,
Vol. 296,
Issue. 6,
p.
2588.
Schötz, Matthias
2023.
Gelfand–Naimark theorems for ordered -algebras.
Canadian Journal of Mathematics,
Vol. 75,
Issue. 4,
p.
1272.
Schmüdgen, Konrad
and
Schötz, Matthias
2024.
Positivstellensätze for semirings.
Mathematische Annalen,
Vol. 389,
Issue. 1,
p.
947.
Klep, Igor
Magron, Victor
Volčič, Jurij
and
Wang, Jie
2024.
State polynomials: positivity, optimization and nonlinear Bell inequalities.
Mathematical Programming,
Vol. 207,
Issue. 1-2,
p.
645.
Ozawa, Narutaka
2024.
A substitute for Kazhdan’s property (T) for
universal nonlattices.
Analysis & PDE,
Vol. 17,
Issue. 7,
p.
2541.