No CrossRef data available.
Article contents
Rotors in Khovanov Homology
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Anstee, Przytycki, and Rolfsen introduced the idea of rotants, pairs of links related by a generalised form of link mutation. We exhibit infinitely many pairs of rotants that can be distinguished by Khovanov homology, but not by the Jones polynomial.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2016
References
[1]
The mathematicapackage knottheory. http://katlas.org.Google Scholar
[2]
Anstee, R. P., Przytycki, J. H., and Rolfsen, D.. Knot polynomials and generalized mutation.
Topology Appl.
32(1989), no. 3, 237–249. http://dx.doi.Org/10.1016/0166-8641(89)90031-X
Google Scholar
[3]
Bar-Natan, D., On Khovanov's categorification of the fones polynomial.
Algebr. Geom. Topol.
2(2002), 337–370. http://dx.doi.Org/10.2140/agt.2002.2.337
Google Scholar
[4]
Bloom, J. M., Odd Khovanov homology is mutation invariant.
Math. Res. Lett.
17(2010), no. 1,1-10. http://dx.doi.Org/10.4310/MRL.2010.v1 7.n1 .a1
Google Scholar
[5]
Jin, G. T. and Rolfsen, D.. Some remarks on rotors in link theory.
Canad. Math. Bull.
34(1991), no. 4, 480–484. http://dx.doi.Org/10.4153/CMB-1991-077-1
Google Scholar
[6]
Khovanov, Mikhail. A categorification of the Jones polynomial. Duke Math. ., 101(3):359-426, 2000. http://dx.doi.Org/10.121 5/S0012-7094-00-10131-7
Google Scholar
[7]
Kronheimer, P. B. and Mrowka, T. S., Khovanov homology is an unknot-detector.
Publ. Math. Inst. Hautes Études Sci.
113(2011), 97–208.Google Scholar
[8]
Rasmussen, J., Knot polynomials and knot homologies. In: Geometry and topology of manifolds, Fields Inst. Commun., 47, American Mathematical Society, Providence, RI, 2005, pp. 261–280.Google Scholar
[9]
Rolfsen, D., Global mutation of knots. Random knotting and linking (Vancouver, BC, 1993).
J. Knot Theory Ramifications
3(1994), no. 3, 407–417. http://dx.doi.Org/10.1142/S0218216594000290
Google Scholar
[11]
Wehrli, S. M., Mutation invariance of Khovanov homology over ¥2-
Quantum Topol.
1(2010), no. 2, 111–128. http://dx.doi.Org/10.4171/QT/3
Google Scholar
You have
Access