Article contents
Semiclassical Limits of Eigenfunctions on Flat n-Dimensional Tori
Published online by Cambridge University Press: 20 November 2018
Abstract
We provide a proof of a conjecture by Jakobson, Nadirashvili, and Toth stating that on an $n$-dimensional flat torus ${{\mathbb{T}}^{n}}$, and the Fourier transform of squares of the eigenfunctions ${{\left| \varphi \lambda \right|}^{2}}$ of the Laplacian have uniform ${{l}^{n}}$ bounds that do not depend on the eigenvalue $\lambda $. The proof is a generalization of an argument by Jakobson, et al. for the lower dimensional cases. These results imply uniform bounds for semiclassical limits on ${{\mathbb{T}}^{n+2}}$. We also prove a geometric lemma that bounds the number of codimension-one simplices satisfying a certain restriction on an $n$-dimensional sphere ${{S}^{n}}\,\left( \text{ }\!\!\lambda\!\!\text{ } \right)$ of radius $\sqrt{\lambda }$, and we use it in the proof.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2013
References
- 1
- Cited by