Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-14T19:03:35.896Z Has data issue: false hasContentIssue false

The Set of Julia Points for Functions Omitting Two Values

Published online by Cambridge University Press:  20 November 2018

P. M. Gauthier
Affiliation:
Département De Mathématiques, Université De Montréal, C.P. 6128 Montréal, P.Q., CanadaH3C 3J7
J. S. Hwang
Affiliation:
Centre De Recherches Mathématiques, Université De Montréal, C.P. 6128 Montréal, P.Q.CanadaH3C 3J7
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let f be a function denned in the unit disk D(|z| < 1). For each point e on the unit circle C(|z| = 1) and each subset S of D, we denote by Cs(f, e) the cluster set of f at e relative to s, i.e.

where N(e, j) = {zD:|z-e| <1/j}.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1976

References

1. Collingwood, E. F. and G. Piranian, Tsuji functions with segments of Julia. Math. Z. 84 (1964), 246253.Google Scholar
2. Colwell, P., Julia points of functions meromorphic in a disc. Bull. London Math. Soc. 4 (1972), 327329.Google Scholar
3. Gauthier, P. M., A criterion for normalcy, Nagoya Math. J. 32 (1968), 277282.Google Scholar
4. Lappan, P. and Piranian, G., Holomorphic functions with dense sets of Plessner points, Proc. Amer. Math. Soc. 21, no. 3 (1969), 555556.Google Scholar
5. Lappan, P., A characterization of Plessner points, Bull. London Math. Soc. 2 (1970), 6062.Google Scholar
6. Mergelyan, S. N., Uniform approximations to functions of a complex variable, [Uspehi Mat. Nauk (N.S.) 7, no. 2 (48) (1952), 31–122]. Amer. Math. Soc. Transi. 101 (1954), 99 pp.Google Scholar
7. Walsh, J. L., Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ. Vol. XX (1960).Google Scholar