Published online by Cambridge University Press: 20 November 2018
Let $G$ be a metrizable compact group, $A$ a separable ${{\text{C}}^{*}}$-algebra, and $\alpha :G\,\to \,\text{Aut}\left( A \right)$ a strongly continuous action. Provided that $\alpha $ satisfies the continuous Rokhlin property, we show that the property of satisfying the $\text{UCT}$ in $E$-theory passes from $A$ to the crossed product ${{\text{C}}^{*}}$-algebra $\mathcal{A}{{\rtimes }_{\alpha }}\,G$ and the fixed point algebra ${{A}^{\alpha }}$. This extends a similar result by Gardella for $KK$-theory in the case of unital ${{\text{C}}^{*}}$-algebras but with a shorter and less technical proof. For circle actions on separable unital ${{\text{C}}^{*}}$-algebras with the continuous Rokhlin property, we establish a connection between the $E$-theory equivalence class of $A$ and that of its fixed point algebra ${{A}^{\alpha }}$.