Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T13:05:42.517Z Has data issue: false hasContentIssue false

Simple Divisible Modules Over Integral Domains

Published online by Cambridge University Press:  20 November 2018

Alberto Facchini*
Affiliation:
Dipartimento di Matematica e Informatica, Universita' di Udine, 33100 Udine, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An R-module is a simple divisible module if it is a nonzero divisible module that has no proper non-zero divisible submodules. We study simple divisible modules and their endomorphism rings, give some examples and determine all simple divisible modules over some classes of rings.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1989

References

1. Bazzoni, S. and Salce, L., On non-standard uniserial modules over valuation domains and their quotients, to appear in J. Algebra.Google Scholar
2. Claborn, L., Every abelian group is a class group, Pacific J. Math. 18 (1966), pp. 219-222.Google Scholar
3. Franzen, B. and Gobel, R., Nonstandard uniserial modules over valuation domains, Results in Math. 12 (1987), pp. 86-94.Google Scholar
4. Fuchs, L. and Salce, L., Modules over valuation domains, Marcel Dekker, New York-Basel, 1985.Google Scholar
5. Lee, S. B., On divisible modules over domains, Arch. Math, to appear.Google Scholar
6. Matlis, E., Some properties of Noetherian domains of dimension one, Canadian J. Math. 13 (1961), pp. 569-586.Google Scholar
7. Matlis, E., Torsion-free modules, Univ. of Chicago Press, Chicago-London, 1972.Google Scholar
8. Matlis, E., 1-Dimensional Cohen-Macaulay Rings, Lecture Notes in Mathematics 327,Springer- Verlag, Berlin-Heidelberg-New York, 1973.Google Scholar
9. Sharpe, D. W. and Varnos, P., Injective modules, Cambridge Univ. Press, Cambridge, 1972.Google Scholar
10. Shelah, S., Non standard uniserial module over a uniserial domain exists, in Around Classification Theory of Models, Lecture Notes in Math. 1182, Springer-Verlag, Berlin-Heidelberg-New York, 1986, pp. 135150.Google Scholar
11. Shores, T. S. and Lewis, W. J., Serial modules and endomorphism rings, Duke Math. J. 41 (1974), pp. 889-909.Google Scholar
12. Varnos, P., Classical rings, J. Algebra 34 (1975), pp. 114-129.Google Scholar
13. Vasconcelos, W. V., Conductor, projectivity and injectivity, Pacific J. Math. 46 (1973), pp. 603-608.Google Scholar