Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T15:00:23.479Z Has data issue: false hasContentIssue false

Simplicial (Co)-homology of $\ell ^{1}(\mathbb{Z}_{+})$

Published online by Cambridge University Press:  17 December 2018

Yasser Farhat
Affiliation:
Academic Support Department, Abu Dhabi Polytechnic, P.O. Box 111499, Abu Dhabi, UAE Email: Yasser.Farhat@adpoly.ac.ae
Frédéric Gourdeau
Affiliation:
Département de mathématiques et de statistique, Université Laval, 1045, avenue de la Médecine, Québec, QC G1V 0A6 Email: Frederic.Gourdeau@mat.ulaval.ca

Abstract

We consider the unital Banach algebra $\ell ^{1}(\mathbb{Z}_{+})$ and prove directly, without using cyclic cohomology, that the simplicial cohomology groups ${\mathcal{H}}^{n}(\ell ^{1}(\mathbb{Z}_{+}),\ell ^{1}(\mathbb{Z}_{+})^{\ast })$ vanish for all $n\geqslant 2$. This proceeds via the introduction of an explicit bounded linear operator which produces a contracting homotopy for $n\geqslant 2$. This construction is generalised to unital Banach algebras $\ell ^{1}({\mathcal{S}})$, where ${\mathcal{S}}={\mathcal{G}}\cap \mathbb{R}_{+}$ and ${\mathcal{G}}$ is a subgroup of $\mathbb{R}_{+}$.

Type
Article
Copyright
© Canadian Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was partially supported by the National Sciences and Engineering Research Council of Canada.

References

Bade, W. G., Curtis, P. C. Jr., and Dales, H. G., Amenability and weak amenability for Beurling and Lipschitz algebras . Proc. Lond. Math. Soc. 55(1987), 359377. https://doi.org/10.1093/plms/s3-55_2.359 Google Scholar
Choi, Y., Gourdeau, F., and White, M. C., Simplicial cohomology of band semigroup algebras . Proc. Roy. Soc. Edinburgh Sect. A 142(2012), no. 4, 715744. https://doi.org/10.1017/S0308210510000648 Google Scholar
Dales, H. G. and Duncan, J., Second order cohomology in groups of some semigroup algebras . In: Banach Algebras ’97 . Walter de Gruyter, Berlin, 1998, pp. 101117.Google Scholar
Farhat, Y., Homologie et cohomologie de quelques algèbres de Banach. Ph.D. thesis, Université Laval, Québec, QC, 2013.Google Scholar
Gourdeau, F., Johnson, B. E., and White, M. C., The cyclic and simplicial cohomology of l 1(ℕ) . Trans. Amer. Math. Soc. 357(2005), no. 12, 50975113.Google Scholar
Gourdeau, F. and White, M. C., Vanishing of the third simplicial cohomology group of l 1(ℤ+) . Trans. Amer. Math. Soc. 353(2001), no. 5, 20032017.Google Scholar
Gourdeau, F. and White, M. C., The cyclic and simplicial cohomology of the bicyclic semigroup algebra . Q. J. Math. 62(2011), 607624. https://doi.org/10.1093/qmath/haq014 Google Scholar
Gourdeau, F. and White, M. C., The cyclic and simplicial cohomology of the Cuntz semigroup algebra . J. Math. Anal. Appl. 386(2012), no. 2, 921932. https://doi.org/10.1016/j.jmaa.2011.08.050 Google Scholar
Helemskii, A. Ya., Banach cyclic (co)homology and the Connes–Tzygan exact sequence . J. Lond. Math. Soc. 46(1992), 449462. https://doi.org/10.1112/jlms/s2-46.3.449 Google Scholar