Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T05:36:33.540Z Has data issue: false hasContentIssue false

Simplicial Cohomology of Some Semigroup Algebras

Published online by Cambridge University Press:  20 November 2018

F. Gourdeau
Affiliation:
Département de Mathématiques et de Statistique, Université Laval, Cité Universitaire, QC e-mail: Frederic.Gourdeau@mat.ulaval.ca
A. Pourabbas
Affiliation:
Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, Tehran 15914, Iran e-mail: arpabbas@aut.ac.ir
M. C. White
Affiliation:
Department of Mathematics, University of Newcastle, Newcastle upon Tyne, NE1 7RU, England e-mail: Michael.White@ncl.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we investigate the higher simplicial cohomology groups of the convolution algebra ${{\ell }^{1}}\left( S \right)$ for various semigroups $S$. The classes of semigroups considered are semilattices, Clifford semigroups, regular Rees semigroups and the additive semigroups of integers greater than $a$ for some integer $a$. Our results are of two types: in some cases, we show that some cohomology groups are 0, while in some other cases, we show that some cohomology groups are Banach spaces.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2007

References

[1] Bonsall, F. F. and Duncan, J., Complete Normed Algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete 80, Springer-Verlag, New York, 1973.10.1007/978-3-642-65669-9Google Scholar
[2] Bowling, S. and Duncan, J., First order cohomology of Banach semigroup algebras. Semigroup Forum 56(1998), no. 1, 130145.10.1007/s00233-002-7009-zGoogle Scholar
[3] Clifford, A. H. and Preston, G. B., The Algebraic Theory of Semigroups. Mathematical Surveys 7, American Mathematical Society, Providence, RI, 1961.Google Scholar
[4] Dales, H. G. and Duncan, J., Second order cohomology in groups of some semigroup algebras. In: Banach Algebras,Walter de Gruyter, Berlin, 1998, pp. 101117.Google Scholar
[5] Gourdeau, F., Johnson, B. E. and White, M. C., The cyclic and simplicial cohomology of 1(ℕ). Trans. Amer. Math. Soc. 357(2005), no. 12, 50975113.10.1090/S0002-9947-05-03702-5Google Scholar
[6] Gourdeau, F., Lykova, Z. A. and White, M. C., A Künneth formula in topological homology and its applications to the simplicial cohomology of . Studia Math. 166(2005), no. 1, 2954.10.4064/sm166-1-3Google Scholar
[7] Gourdeau, F., Lykova, Z. A. and White, M. C., The simplicial cohomology of . In: Banach Algebras and Their Applications, Contemp. Math. 363, American Mathematical Society, Providence, RI, 2004, pp. 95109.10.1090/conm/363/06645Google Scholar
[8] Hewitt, E. and Ross, K. A., Abstract Harmonic Analysis. Vol. I. Structure of Topological Groups, Integration Theory, Group Representations. Second edition. Grundlehren der Mathematischen Wissenschaften 115, Springer-Verlag, Berlin, 1979.Google Scholar
[9] Helemskii, A. Ya., Banach cyclic (co)homology and the Connes-Tzygan exact sequence. J. London Math. Soc. 46(1992), no. 3, 449462.10.1112/jlms/s2-46.3.449Google Scholar
[10] Howie, J. M., Fundamentals of Semigroup Theory. London Mathematical Society Monographs 12. The Clarendon Press, New York, 1995.Google Scholar
[11] Johnson, B. E., Cohomology in Banach Algebras. Memoirs of the American Mathematical Society 127, American Mathematical Society, Providence, RI, 1972.10.1090/memo/0127Google Scholar
[12] Pourabbas, A., Second cohomology group of group algebras with coefficients in iterated duals. Proc. Amer.Math. Soc. 132(2004), no. 5, 14031410.Google Scholar