No CrossRef data available.
Article contents
Small trees in supercritical random forests
Published online by Cambridge University Press: 29 September 2020
Abstract
We study the scaling limit of a random forest with prescribed degree sequence in the regime that the largest tree consists of all but a vanishing fraction of nodes. We give a description of the limit of the forest consisting of the small trees, by relating a plane forest to a marked cyclic forest and its corresponding skip-free walk.
MSC classification
Primary:
60C05: Combinatorial probability
- Type
- Article
- Information
- Copyright
- © Canadian Mathematical Society 2020
References
Abraham, R., Delmas, J.-F., and Hoscheit, P.,
A note on the Gromov–Hausdorff–Prokhorov distance between (locally) compact metric measure spaces
. Electron. J. Probab. 18(2013), no. 14, 21. http://dx.doi.org/10.1214/EJP.v18-2116
CrossRefGoogle Scholar
Aldous, D.,
The continuum random tree. II. an overview
. In: Stochastic analysis (Durham, 1990), London Mathematical Society Lecture Note Series, 167, Cambridge University Press,
Cambridge, UK, 1991, pp. 23–70. http://dx.doi.org/10.1017/CB9780511662980.003
CrossRefGoogle Scholar
Aldous, D.,
The continuum random tree. III
. Ann. Probab. 21(1993), 248–289.10.1214/aop/1176989404CrossRefGoogle Scholar
Aldous, D. J.,
Exchangeability and related topics
. In: École d’été de probabilités de Saint-Flour, XIII—1983, Lecture Notes in Mathematics, 1117, Springer,
Berlin, Germany, 1985, pp.1–198. http://dx.doi.org/10.1007/BFb0099421
CrossRefGoogle Scholar
Broutin, N. and Marckert, J.-F.,
Asymptotics of trees with a prescribed degree sequence and applications
. Random Struct. Algor. 44(2014), 290–316. http://dx.doi.org/10.1002/rsa.20463
CrossRefGoogle Scholar
Cheplyukova, I. A.,
The emergence of a giant tree in a random forest
. Discrete Math. Appl. 8(1998), 17–33. http://dx.doi.org/10.1515/dma.1998.8.1.17
CrossRefGoogle Scholar
Diaconis, P. and Freedman, D.,
Finite exchangeable sequences
. Ann. Probab. 8(1980), 745–764.CrossRefGoogle Scholar
Durrett, R., Probability: theory and examples. 4th ed., Cambridge Series in Statistical and Probabilistic Mathematics, 31, Cambridge University Press,
Cambridge, UK, 2010. http://dx.doi.org/10.1017/CB09780511779398
CrossRefGoogle Scholar
Evans, S. N., Probability and real trees
. Lecture Notes in Mathematics, 1920, Springer,
Berlin, Germany, 2008. http://dx.doi.org/10.1007/978-3-540-74798-7
CrossRefGoogle Scholar
Le Gall, J.-F.,
Random trees and applications
. Probab. Surv. 2(2005), 245–311. http://dx.doi.org/10.1214/154957805100000140
CrossRefGoogle Scholar
Lei, T.,
Scaling limit of random forests with prescribed degree sequences
. Bernouilli 25(2019), 2409–2438.CrossRefGoogle Scholar
McDiarmid, C.,
Concentration
. In: Probabilistic methods for algorithmic discrete mathematics, Algorithms Combinations, 16, Springer,
Berlin, Germany, 1998, pp. 195–248. http://dx.doi.org/10.1007/978-3-662-12788-9-6
CrossRefGoogle Scholar
Mörters, P. and Peres, Y., Brownian motion
. Cambridge Series in Statistical and Probabilistic Mathematics, 30, Cambridge University Press,
Cambridge, UK, 2010. http://dx.doi.org/10.1017/CBO9780511750489
Google Scholar
Pitman, J., Combinatorial stochastic processes
. Lecture Notes in Mathematics, 1875, Springer-Verlag,
Berlin, Germany, 2006.Google Scholar
Schilling, R. L. and Partzsch, L., Brownian motion
. De Gruyter,
Berlin, Germany, 2012. http://dx.doi.org/10.1515/9783110278989
CrossRefGoogle Scholar