Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T05:36:01.919Z Has data issue: false hasContentIssue false

Some Properties Associated with Adequate Transversals

Published online by Cambridge University Press:  20 November 2018

Xiangjun Kong*
Affiliation:
Department of Mathematics, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China, andDepartment of Mathematics, Qufu Normal University, Qufu, Shandong, 273165, P. R. China e-mail: xiangjunkong97@163.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, another relationship between the quasi-ideal adequate transversals of an abundant semigroup is given. We introduce the concept of a weakly multiplicative adequate transversal and the classic result that an adequate transversal is multiplicative if and only if it is weakly multiplicative and a quasi-ideal is obtained. Also, we give two equivalent conditions for an adequate transversal to be weakly multiplicative. We then consider the case when $I$ and $\Lambda $ (defined below) are bands. This is analogous to the inverse transversal if the regularity condition is adjoined.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2011

References

[1] Blyth, T. S. and Santos, M. H. Almeida, On weakly multiplicative inverse transversals. Proc. Edinburgh Math. Soc. 37(1994), no. 1, 9199. doi:10.1017/S001309150001871XGoogle Scholar
[2] Blyth, T. S. and Chen, J., Inverse transversals are mutually isomorphic. Comm. Algebra 29(2001), no. 2, 799804. doi:10.1081/AGB-100001544Google Scholar
[3] Blyth, T. S. and McFadden, R., Regular semigroups with a multiplicative inverse transversal. Proc. Roy. Soc. Edinburgh Sect. A 92(1982), no. 3–4, 253270.Google Scholar
[4] Chen, J., Abundant semigroups with adequate transversals. Semigroup Forum 60(2000), no. 1, 6779. doi:10.1007/s002330010004Google Scholar
[5] El-Qallali, A., Abundant semigroups with a multiplicative type A transversal. Semigroup Forum 47(1993), no. 3, 327340. doi:10.1007/BF02573770Google Scholar
[6] Fountain, J., Adequate semigroups. Proc. Edinburgh Math. Soc. 22(1979), no. 2, 113125. doi:10.1017/S0013091500016230Google Scholar
[7] Fountain, J., Abundant semigroups. Proc. London Math. Soc. 44(1982), no. 1, 103129. doi:10.1112/plms/s3-44.1.103Google Scholar
[8] Guo, X. J., Abundant semigroups with a mulitiplicative adequate transversal. Acta Math. Sin. 18(2002), no. 2, 229244. doi:10.1007/s101140200170Google Scholar
[9] Hall, T. E., Some properties of local subsemigroups inherited by larger subsemigroups. Semigroup Forum 25(1982), no. 1–2, 3549. doi:10.1007/BF02573586Google Scholar
[10] Luo, M., Relationship between the quasi-ideal adequate transversals of an abundant semigroup. Semigroup Forum 67(2003), no. 3, 411418. doi:10.1007/s00233-001-0008-7Google Scholar
[11] Saito, T., Regular semigroups with a weakly multiplicative inverse transversal. In: Proceedings of the 8th symposium on semigroups (Matsue, 1984), Shimane Univ., Matsue, 1985, pp. 2225.Google Scholar
[12] Saito, T., Relationship between the inverse transversals of a regular semigroup. Semigroup Forum 33(1986), no. 2, 245250. doi:10.1007/BF02573196Google Scholar
[13] Saito, T., Construction of regular semigroups with inverse transversals. Proc. Edinburgh Math. Soc. 32(1989), no. 1, 4151. doi:10.1017/S0013091500006891Google Scholar
[14] Tang, X., Regular semigoups with inverse transversals. Semigroup Forum 55(1997), no. 1, 2432. doi:10.1007/PL00005909Google Scholar