Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T09:41:24.113Z Has data issue: false hasContentIssue false

Some Results Concerning the Structure of Graphs

Published online by Cambridge University Press:  20 November 2018

G.A. Dirac*
Affiliation:
Universität Hamburg
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The object of this paper is to present results concerning the structure of 3-connected graphs and of 5-chromatic and 6-chromatic graphs and also a theorem on contraction and a theorem of Turan type. The Axiom of Choice is assumed.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1963

References

1. Menger, K., Kurventheorie, Leipzig 1932, 221-228. G. Hajos, Zum Mengerschen Graphensatz, Acta Szeged 7(1934), 44.Google Scholar
2. Corradi, K. and Hajnal, A., On the maximum number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar.Google Scholar
3. Dirac, G. A. and Erdös, P., On the maximum number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar.Google Scholar
4. Dirac, G. A., Extensions du théoreme de Menger, C. R. Acad. Sci., Paris, 250, fasc. 26(1960), 4252.Google Scholar
5. Wagner, K., Über eine Erweiterung eines Satzes von Kuratowski, Deutsche Math. 2 (1937), 280.Google Scholar
6. Wagner, K., Bemerkungen zu Hadwiger's Vermutung, Math. Ann. 141 (1960), 433.Google Scholar
7. Dirac, G. A., A contraction theorem for abstract graphs, Math. Ann. 144 (1961), 93.Google Scholar
8. Wagner, K., loc. cit. 6, 436, Lemma 1.4.Google Scholar
9. de Bruijn, G. N. and Erdös, P., A colour problem for infinite graphs and a problem in the theory of relations, Proc. Koninkl. Akad. Wetenschappen A (1951), 371.Google Scholar
10. Dirac, G. A., Theorems related to the four colour conjecture, Journal London Math. Soc. 29(1954), 144, Theorem 1.Google Scholar
11. Dirac, G. A., A property of 4-chromatic graphs and some remarks on critical graphs. Journal London Math. Soc. 27(1952), 87. Bernhardine Zeidl, Über 4- und 5-chrome Graphen, Monatsh. Math. 62 (1958), 212.Google Scholar
12. Dirac, G. A., Trennende Knotenpunktmengen und Reduzibilität abstrakter Graphen, Crelle 204 (1960), 128.Google Scholar