Article contents
A Spectral Identity on Jacobi Polynomials and its Analytic Implications
Published online by Cambridge University Press: 20 November 2018
Abstract
The Jacobi coefficients $c_{j}^{\ell }\left( \alpha ,\,\beta \right)\,\left( 1\,\le \,j\,\le \,\ell ,\,\alpha ,\,\beta \,>\,-1 \right)$ are linked to the Maclaurin spectral expansion of the Schwartz kernel of functions of the Laplacian on a compact rank one symmetric space. It is proved that these coefficients can be computed by transforming the even derivatives of the Jacobi polynomials $P_{k}^{\left( \alpha ,\,\beta \right)}\,\left( k\,\ge \,0,\,\alpha ,\,\beta \,>\,-1 \right)$ into a spectral sum associated with the Jacobi operator. The first few coefficients are explicitly computed, and a direct trace interpretation of the Maclaurin coefficients is presented.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2018
References
- 9
- Cited by