Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T05:32:05.017Z Has data issue: false hasContentIssue false

Sur les caractères d'une algèbre de Banach

Published online by Cambridge University Press:  20 November 2018

Catalin Badea*
Affiliation:
URA 751 au CNRS & UFR de Mathématiques Université de Lille I F-59655 Villeneuve d’Ascq France, e-mail: badea@gat.univ-lille1.fr
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1997

References

[A] Aupetit, B., Propriétés spectrales des algèbres de Banach, Lecture Notes in Math. 735 (1979), Springer-Verlag, Berlin.Google Scholar
[Be] Beddaa, A., Une caractérisation des caractères dans les algèbres normées completes, C. R. Math. Rep. Acad. Sci. Canada 15 (1993), 101104 Google Scholar
[B] Burckel, R. B., An Introduction to Classical Complex Analysis, vol. I, Academic Press, New York 1979.Google Scholar
[G] Gleason, A. M., A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171172.Google Scholar
[KZ] Kahane, J.-P. and Zelazko, W., A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339343.Google Scholar
[M] Maltese, G., Extreme positive functionals and ideals of finite codimension in commutative Banach Ł-algebras, Atti Sem. Mat. Fis. Univ. Modena 39 (1991), 569580.Google Scholar
[P] Palmer, T. W., Banach Algebras and The General Theory of Ł-Algebras, vol. I, Algebras and Banach Algebras, Encyclopedia of Math. Appl. 49, Cambridge Univ. Press, 1994.Google Scholar
[RS] Roitman, M. and Sternfeld, Y., When is a linear functional multiplicative?, Trans. Amer. Math. Soc. 267 (1981), 111124.Google Scholar
[S] Siddiqi, J. A., On a characterization of maximal ideals, Canad.Math. Bull. 13 (1970), 219220.Google Scholar
[W] Wille, R., The theorem of Gleason-Kahane-Żelazko in a commutative symmetric Banach algebra, Math. Z. 190 (1985), 301304.Google Scholar
[T] Titchmarsh, E. C., The Theory of Functions, 2nd edition, Oxford Univ. Press, 1934.Google Scholar
[Y] Yang, Chung-Chun, On the zeros of an entire function and its second derivative, Rend. Accad. Lincei Roma (8) 49 (1970), 2729.Google Scholar