No CrossRef data available.
Article contents
Sur les caractères d'une algèbre de Banach
Published online by Cambridge University Press: 20 November 2018
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1997
References
[A]
Aupetit, B., Propriétés spectrales des algèbres de Banach, Lecture Notes in Math. 735 (1979), Springer-Verlag, Berlin.Google Scholar
[Be]
Beddaa, A., Une caractérisation des caractères dans les algèbres normées completes, C. R. Math. Rep. Acad. Sci. Canada 15 (1993), 101–104
Google Scholar
[B]
Burckel, R. B., An Introduction to Classical Complex Analysis, vol. I, Academic Press, New York
1979.Google Scholar
[G]
Gleason, A. M., A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171–172.Google Scholar
[KZ]
Kahane, J.-P. and Zelazko, W., A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339–343.Google Scholar
[M]
Maltese, G., Extreme positive functionals and ideals of finite codimension in commutative Banach Ł-algebras, Atti Sem. Mat. Fis. Univ. Modena 39 (1991), 569–580.Google Scholar
[P]
Palmer, T. W., Banach Algebras and The General Theory of Ł-Algebras, vol. I, Algebras and Banach Algebras, Encyclopedia of Math. Appl. 49, Cambridge Univ. Press, 1994.Google Scholar
[RS]
Roitman, M. and Sternfeld, Y., When is a linear functional multiplicative?, Trans. Amer. Math. Soc. 267 (1981), 111–124.Google Scholar
[S]
Siddiqi, J. A., On a characterization of maximal ideals, Canad.Math. Bull. 13 (1970), 219–220.Google Scholar
[W]
Wille, R., The theorem of Gleason-Kahane-Żelazko in a commutative symmetric Banach algebra, Math. Z. 190 (1985), 301–304.Google Scholar
[T]
Titchmarsh, E. C., The Theory of Functions, 2nd edition, Oxford Univ. Press, 1934.Google Scholar
[Y]
Yang, Chung-Chun, On the zeros of an entire function and its second derivative, Rend. Accad. Lincei Roma (8) 49 (1970), 27–29.Google Scholar
You have
Access