Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T21:16:51.692Z Has data issue: false hasContentIssue false

Thinnest Packing of Cubes with a Given Number of Neighbours

Published online by Cambridge University Press:  20 November 2018

L. Fejes Tóth
Affiliation:
Mathematical Institute of the Hungarian Academy of Sciences Budapest V., Reáltanova U. 13-15
N. Sauer
Affiliation:
Dept. of Mathematics University of Calgary, Calgary, Alberta Canada T2N 1N4
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As a contribution to various investigations [1-11] about packing of convex bodies with certain conditions imposed on the number of neighbours of each body, V. Chvátal [12] recently proved the following theorem: If in a packing of translates of a square each square has at least six neighbours then the density of the packing is at least 11/15.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1977

References

1. Tóth, Fejes L., Scheibenpackungen konstanter Nachbarnzahl, Acta Math. Acad. Sci. Hungar. 20(1969)375-381.Google Scholar
2. Robinson, R.M., Finite sets of points on a sphere with each nearest to five others, Math. Ann. 179(1969)296-318.Google Scholar
3. Tóth, Fejes L., Remarks on a theorem of R. M. Robinson, Studia Sci. Math. Hungar. 4 (1969)441-445.Google Scholar
4. Wegner, G., Bewegungsstabile Packungen konstanter Nachbarnzahl, Studia Sci. Math. Hungar. 6(1971)431-438.Google Scholar
5. Tóth, Fejes G., ?ber Parkettierungen konstanter Nachbarnzahl, Studia Sci. Math. Hungar. 6 (1971)133-135.Google Scholar
6. Böröczky, K., Über die Newtonsche Zahl regulärer Vielecke, Periodica Math. Hungar. 1 (1971) 113-119.Google Scholar
7. Linhart, J., Über einige Vermutungen von L. Fejes Tóth, Acta Math. Acad. Sci. Hungar. 24 (1973) 199-201.Google Scholar
8. Linhart, J., Endliche n-nachbam Packungen in der Ebene und auf der Kugel, Periodica Math. Hungar. 5 (1974) 301-306.Google Scholar
9. Gács, P., Packing convex sets in the plane with a great number of neighbours, Acta Math. Acad. Sci. Hungar. 23 (1972) 383-388.Google Scholar
10. Tóth, Fejes L., Five-neighbour packing of convex discs, Periodica Math. Hungar. 4 (1973) 383-388.Google Scholar
11. Makai, E. Jr., Five-neighbour packing of convex discs, Periodica Math. Hungar. 5 (1974).Google Scholar
12. Chvátal, V., On a conjoncture of Fejes Tóth, Periodica Math. Hungar, 6 (1975) 357-362.Google Scholar