Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T17:19:07.835Z Has data issue: false hasContentIssue false

Translates of Functions on the Heisenberg Group and the HRT Conjecture

Published online by Cambridge University Press:  03 February 2020

B. Currey
Affiliation:
Department of Mathematics and Statistics, St. Louis University, St. Louis, MO63103 Email: bradley.currey@slu.edu
V. Oussa
Affiliation:
Department of Mathematics and Computer Science, Bridgewater State University, Bridgewater, MA02324 Email: voussa@bridgew.edu

Abstract

We prove that the HRT (Heil, Ramanathan, and Topiwala) Conjecture is equivalent to the conjecture that co-central translates of square-integrable functions on the Heisenberg group are linearly independent.

Type
Article
Copyright
© Canadian Mathematical Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balan, R. and Krishtal, I., An almost periodic noncommutative Wiener’s lemma. J. Math. Anal. Appl. 370(2010), 339349. https://doi.org/10.1016/j.jmaa.2010.04.053CrossRefGoogle Scholar
Benedetto, J. J. and Bourouihiya, A., Linear independence of finite gabor systems determined by behavior at infinity. J. Geom. Anal. 25(2015), 226254.CrossRefGoogle Scholar
Bownik, M. and Speegle, D., Linear independence of time-frequency translates of functions with faster than exponential decay. Bull. Lond. Math. Soc. 45(2013), 554566. https://doi.org/10.1112/blms/bds119CrossRefGoogle Scholar
Christensen, O., An introduction to frames and Riesz bases. Applied and Numerical Harmonic Analysis, 7, Birkhäuser Boston, Inc., 2003. https://doi.org/10.1007/978-0-8176-8224-8CrossRefGoogle Scholar
Corwin, L. and Greenleaf, F. P., Representations of nilpotent Lie groups and their applications. Part I. Basic theory and examples, Cambridge Studies in Advanced Mathematics, 18, Cambridge University Press, Cambridge, 1990.Google Scholar
Dixmier, J. and Malliavin, P., Factorisations de fonctions et de vecteurs indefiniment differentiables. (French) Bull. Sci. Math. (2) 102(1978), 307330.Google Scholar
Edgar, G. A. and Rosenblatt, J. M., Difference equations over locally compact abelian groups. Trans. Amer. Math. Soc. 253(1979), 273289. https://doi.org/10.2307/1998197CrossRefGoogle Scholar
Folland, G. B., Harmonic analysis in phase space. Annals of Mathematics Studies, 122, Princeton University Press, 1989. https://doi.org/10.1515/9781400882427CrossRefGoogle Scholar
Greenleaf, F. P. and Moskowitz, M., Cyclic vectors for representations of locally compact groups. Math. Ann. 190(1971), 265288. https://doi.org/10.1007/BF01431155CrossRefGoogle Scholar
Groc̈henig, K., Foundations of time-frequency analysis. Applied and Numerical Harmonic Analysis, Birkhaüser Boston, Inc., Boston, MA, 2001. https://doi.org/10.1007/978-1-4612-0003-1CrossRefGoogle Scholar
Gröchenig, K., Linear independence of time-frequency shifts? Monatsh. Math. 177(2015), 6777. https://doi.org/10.1007/s00605-014-0637-zCrossRefGoogle Scholar
Heil, C., Linear independence of finite Gabor systems. In: Harmonic analysis and applications. Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2006. https://doi.org/10.1007/0-8176-4504-7_9CrossRefGoogle Scholar
Heil, C., Ramanathan, J., and Topiwala, P., Linear independence of time-frequency translates. Proc. Amer. Math. Soc. 124(1996), 27872795. https://doi.org/10.1090/S0002-9939-96-03346-1CrossRefGoogle Scholar
Heil, C. and Speegle, D., The HRT conjecture and the zero divisor conjecture for the heisenberg group. Excursions in harmonic analysis, 3, Birkhäuser/Springer, Cham, 2015, pp. 159176.Google Scholar
Linnell, P., Von neumann algebras and linear independence of translates. Proc. Amer. Math. Soc. 127(1999), 32693277. https://doi.org/10.1090/S0002-9939-99-05102-3CrossRefGoogle Scholar
Linnell, P. A., Puls, M. J., and Roman, A., Linear dependency of translations and square-integrable representations. Banach J. Math. Anal. 11(2017), 945962. https://doi.org/10.1215/17358787-2017-0028CrossRefGoogle Scholar
Losert, V. and Rindler, H., Cyclic vectors for L p(G). Pacific J. Math. 89(1980), 143145.CrossRefGoogle Scholar
Moore, C. C. and Wolf, J. A., Square integrable representations of nilpotent groups. Trans. Amer. Math. Soc. 185(1973), 445462. https://doi.org/10.2307/1996450CrossRefGoogle Scholar
Okoudjou, K. A., Extension and restriction principles for the HRT conjecture. J. Fourier Anal. Appl. 25(2019), 18741901. https://doi.org/10.1007/s00041-018-09661-xCrossRefGoogle Scholar