Article contents
Two Volume Product Inequalities and Their Applications
Published online by Cambridge University Press: 20 November 2018
Abstract
Let $K\,\subset \,{{\mathbb{R}}^{n+1}}$ be a convex body of class ${{C}^{2}}$ with everywhere positive Gauss curvature. We show that there exists a positive number $\delta \left( K \right)$ such that for any $\delta \,\in \,\left( 0,\,\delta \left( K \right) \right)$ we have $\text{Vol}\left( {{K}_{\delta }} \right)\,\cdot \,\text{Vol}\left( {{\left( {{K}_{\delta }} \right)}^{*}} \right)\,\ge \,\text{Vol}\left( K \right)\,\cdot \,\text{Vol}\left( {{K}^{*}} \right)\,\ge \,\text{Vol}\left( {{K}^{\delta }} \right)\,\cdot \,\text{Vol}\left( {{\left( {{K}^{\delta }} \right)}^{*}} \right)$, where ${{K}_{\delta }}$, ${{K}^{\delta }}$ and ${{K}^{*}}$ stand for the convex floating body, the illumination body, and the polar of $K$, respectively. We derive a few consequences of these inequalities.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2009
References
- 11
- Cited by