Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T20:10:42.478Z Has data issue: false hasContentIssue false

Weak Arithmetic Equivalence

Published online by Cambridge University Press:  20 November 2018

Guillermo Mantilla-Soler*
Affiliation:
Departamento de Matemáticas, Universidad de los Andes, Carrera 1 N. 18A-10, Bogotá, Colombia. e-mail: g.mantilla691@uniandes.edu.co
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Inspired by the invariant of a number field given by its zeta function, we define the notion of weak arithmetic equivalence and show that under certain ramification hypotheses this equivalence determines the local root numbers of the number field. This is analogous to a result of Rohrlich on the local root numbers of a rational elliptic curve. Additionally, we prove that for tame non-totally real number fields, the integral trace form is invariant under arithmetic equivalence

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2015

References

[1] Conway, J. H. and Sloane, N. J. A., Sphere packings, lattices and groups. Third ed., Grundlehren der MathematischenWissenschaften, 290, Springer-Verlag, New York, 1999.Google Scholar
[2] Conner, P. E. and R. Perlis, A survey of trace forms of algebraic number fields. Series in Pure Mathematics, 2,World Scientific, Singapore, 1984.Google Scholar
[3] Deligne, P., Les constantes locales de l’´equation fonctionelle de la fonction L d’Artin d’une repres´esentation orthogonale. Invent Math. 35 (1976), 296316. http://dx.doi.org/10.1007/BF01390143 Google Scholar
[4] Eichler, M., Quadratische Formen und orthogonal Gruppen. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Ber¨ucksichtigung der Anwendungsgebiete, 63, Springer-Verlag, Berlin, 1952.Google Scholar
[5] Jones, J., Number fields database. http://hobbes.la.asu.edu/NFDB/Google Scholar
[6] Klingen, N., Arithmetical similarities. Prime decomposition and finite group theory. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998.Google Scholar
[7] Kondo, T., Algebraic number fields with the discriminant equal to that of a quadratic number field. J. Math. Soc. Japan 47 (1995), no. 1, 3136. http://dx.doi.org/10.2969/jmsj/04710031 Google Scholar
[8] Mantilla-Soler, G., Integral trace forms associated to cubic extensions. Algebra Number Theory, 4 (2010), no. 6, 681699. http://dx.doi.org/10.2140/ant.2010.4.681 Google Scholar
[9] Mantilla-Soler, G., On number fields with equivalent integral trace forms. Int. J. Number Theory 8 (2012), no. 7, 15691580. http://dx.doi.org/10.1142/S1793042112500807 Google Scholar
[10] Mantilla-Soler, G., On the Arithmetic determination of the trace. arxiv:1308.2187Google Scholar
[11] Mantilla-Soler, G., The genus of the Integral trace form. http://matematicas.uniandes.edu.co/_gmantilla/GenTr.pdfGoogle Scholar
[12] Mantilla-Soler, G., The Spinor genus of the Integral trace form. arxiv:1306.3998Google Scholar
[13] Martinet, J., Character theory and Artin L-functions. In: Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, New York, 1977, pp. 187..Google Scholar
[14] Perlis, R., On the analytic determination of the trace form. Canad. Math. Bull. 28 (1985), no. 4, 422430. http://dx.doi.org/10.4153/CMB-1985-051-2 Google Scholar
[15] Perlis, R., On the equation K K0. J. Number Theory. 9 (1977), no. 3, 342360. http://dx.doi.org/10.1016/0022-314X(77)90070-1 Google Scholar
[16] Rohrlich, D. E., Variation of the root number in families of elliptic curves. Compositio Math. 87 (1993), no. 2, 119151. Google Scholar
[17] Rohrlich, D. E., Root numbers. In: Arithmetic of L-functions, IAS/Park City Mathematics Series, 18, American Mathematical Society, Providence, RI, 2011, pp. 353448..Google Scholar
[18] Serre, J-P., L’invariant de Witt de la forme Tr(x2). Comment Math. Helv. 59 (1984), no. 4, 651676. http://dx.doi.org/10.1007/BF02566371 Google Scholar
[19] Serre, J-P., Local fields. Graduate Texts in Mathematics, 67, Springer-Verlag, New York-Berlin, 1979.Google Scholar
[20] Tate, J. T., Local constants. In: Algebraic number fields L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London, 1977, pp. 89131..Google Scholar