Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T23:04:23.244Z Has data issue: false hasContentIssue false

Zp-Towers in Demuškin Groups

Published online by Cambridge University Press:  20 November 2018

Lloyd D. Simons*
Affiliation:
University of Vermont, Burlington, Vermont
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note, we develop the notion of a Zp-tower in a Demuskin group, and apply the results of Koch and Wingberg on the uniqueness of so-called Demuškin formations to give a classification of such towers in the case p ≠ 2.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1989

References

1. Diekert, V., Uber die Absolute Galoisgruppe dyadischer Zahlkôper, Journal fiir die reine und angewandte Mathematik 350 (1984).Google Scholar
2. Dummit, D., Labute, J. P., On a new characterization of Demuskin groups, Inv. Math. 73 (1983).Google Scholar
3. Haberland, K., Galois cohomology of algebraic number fields, VEB Deutcher Verlag der Wissenschaften (1978).Google Scholar
4. Koch, H., Galoissche Théorie der p-Erweiterungen, Springer-Verlag (1970).Google Scholar
5. Koch, H., The Galois group of a p-closed extension of a local number field, Soviet Math. Dokl. 19 (1978).Google Scholar
6. Labute, J. P., Classification of Demuskin groups, Canad. J. of Math. 19 (1967).Google Scholar
7. Serre, J. P., Cohomologie galoisienne, Lecture Notes in Mathematics 7 (1963).Google Scholar
8. Serre, J. P., Structure de certains pro-p groupes, Séminaire Bourbaki 252 (1962).Google Scholar
9. Simons, L., The structure of the Hilbert symbol for unramified extensions of a 2-adic number field, Ph.D. Thesis, McGill University (1986).Google Scholar
10. Wingberg, K., Der Eindeutigkeitssatz fur Demuskinformationen, Inv. Math. 70 (1982).Google Scholar