Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T23:52:14.209Z Has data issue: false hasContentIssue false

Age, origin and climatic signal of English Mesozoic clays based on K/Ar signatures

Published online by Cambridge University Press:  09 July 2018

C. V. Jeans*
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing StreetCambridge CB2 3EQ
J. G. Mitchell
Affiliation:
29 Greystoke Park, GosforthNewcastle upon Tyne NE3 2DZ
M. J. Fisher
Affiliation:
Nevis Associates Ltd., Helensburgh, Argyll and Bute, G84 8DD
D. S. Wray
Affiliation:
School of Earth Sciences, University of Greenwich, PembrokeChatham Maritime, Kent ME4 4AW, UK
I. R. Hall
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing StreetCambridge CB2 3EQ

Abstract

The K/Ar characteristics of 53 clay assemblages (Triassic–Cretaceous), representing the detrital, volcanogenic and arid-facies clay mineral associations, are interpreted in relation to their mineralogy, chronostratic age and geological origins. The K-bearing mineral components of the 1–2 μm, 0.2–1 μm and <0.2 μm fractions of each clay assemblage together display one of two characteristic patterns of K2O and 40Ar values (the K/Ar signature of the assemblage) on a 40Ar/K2O correlation diagram. Interpretation of the K/Ar signatures indicates that: (1) all of these clay assemblages are apparently unaffected by burial diagenetic illitization; (2) the Jurassic and Cretaceous detrital clay assemblages are derived from the reworking of weathered Caledonian metasediments (420 500 Ma) and weathered kaolin-bearing sediments of Upper Devonian/ Carboniferous age; and (3) the role played by palaeoclimate in developing the pattern of clay minerals in the Mesozoic sediments of England is much less significant than previously believed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, P. (1998) Purbeck-Wealden (early Cretaceous) climates. Proc. Geol. Assoc. 109, 197236.CrossRefGoogle Scholar
Aronson, J.L. & Hower, J. (1976) Mechanism of burial metamorphism of argillaceous sediment, 2: radiogenic argon evidence. Geol. Soc. Am. Bull. 87, 738–44.2.0.CO;2>CrossRefGoogle Scholar
Batten, D.J. (1991) Reworking of plant microfossils and sedimentary provenance. Pp. 990 in. Developments in Sedimentary Provenance Studies (Morton, A.C., Todd, S.P. & Haughton, P.D.W., editors). Spec. Publ. 57. Geological Society, London.Google Scholar
Bevington, P.R. (1969) Data Reduction and Error Analysis for the Physical Sciences. McGraw Hill, New York, 336 pp.Google Scholar
Brotzen, F. (1960) The Mesozoics of Scania, S. Sweden. Guide to excursions A21 and C16. Int. Geol. Cong. XXI session Norden.Google Scholar
Burley, S.D. & Flisch, M. (1989) K-Ar geochronology and the timing of detrital I-S clay illitization and authigenic illite precipitation in the Piper and Tartan Fields, Outer Moray Firth, UK North Sea. Clay Miner. 21, 285315.Google Scholar
Chamley, H. (1989) Depth of burial. Pp. 357–89 in: Clay Sedimentology.Springer-Verlag, Berlin.Google Scholar
Clement, R.G. (1993) Type-section of the Purbeck Limestone Group, Durlston Bay, Swanage. Proc. Dorset Nat. Hist. Archaeol. Soc. 114, 181206.Google Scholar
Collins, A. (1990). The 1-10 Spore Colouration Index (SCI) Scale: a universally applicable colour maturation scale, based on graded, picked palynomorphs. Meded. Rijks Geol. Dienst. 45, 3947.Google Scholar
Cornford, C. (1998) Source rocks and hydrocarbons of the North Sea. Pp. 376462 in: Petroleum Geology of the North Sea,4th edition (Glennie, K.W., editor). Blackwell Scientific Publications, Oxford.CrossRefGoogle Scholar
De Lapparent, J. (1930) Les bauxites de la France meridionale. Mém. Carte géol. Dé t. Fr.Google Scholar
Deconinck, J.F. (1987) Mineraux argileux des facie's purbecki ens: Jura suisse et français, Dorset (Angleterre) et Boulonnais (France). Ann. Soc. Géol. Nord. CVI, 285297.Google Scholar
Deconinck, J.F., Strasser, A. & Debrabaut, P. (1988) Formation of illitic minerals at surface temperature in Purbeckian sediments (Lower Berriasian, Swiss and French Jura). Clay Miner. 23, 91103.CrossRefGoogle Scholar
Deconinck, J.F., Holtzapffel, T., Robaszynski, F. & Amédro, F. (1989) Données mineralogiques et biologiques comparée dans les craies cénomaniennes a’ santoniennes du Boulonnnais. Geobios Lyon, Mém sp. 11, 179188.Google Scholar
Deconinck, J.F., Amedro, F., Fiolet-Piette, A., Juignet, P., Renard, M. & Robaszynski, F. (1991) Controle paleogeographique de la sedimentation argileuse dans le Cenomanien du Boulonnais et du Pays de Caux. Ann. Soc. Géol. Nord, 1 (2me série), 5766.Google Scholar
Faure, G. (1986) Principles of Isotope Geology, 2nd edition. Wiley, J., New York.Google Scholar
Felix-Henningsen, P. (1994) Mesozoic-Tertiary weathering and soil formation on slates of the Rhenish Massif, Germany. Catena, 21, 229242.Google Scholar
Fitch, F.J., Miller, J.A. & Thompson, D.B. (1966) The palaeogeographic significance of isotopic age determinations on detrital micas from the Triassic of the Stockport-Macclesfield district, Cheshire, England. Palaeogeogr. Palaeoclimatol. Palaeoe col. 2, 281312.CrossRefGoogle Scholar
Funkhauster, J.G., Barnes, I.L. & Naughton, J.J. (1966) Problems in the dating of volcanic rocks by the potassium- argon method. Bull. Volcanol. 29, 709718.Google Scholar
Glasmann, J.R., Larter, S., Briedis, N.A. & Lundegard, P.D. (1989) Shale diagenesis in the Bergen High Area, North Sea. Clays Clay Miner. 37, 97112.Google Scholar
Gradstein, F.M., Agterberg, F.P., Ogg, J.G., Hardenbohl, J., van Veen, P., Thierry, T. & Huang, Z. (1994) A Mesozoi c time scale. J. Geophys. Res. 99, 2405124074.CrossRefGoogle Scholar
Greenwood, P.J., Shaw, H.F. & Fallick, A.E. (1994) Petrographic and isotopic evidence for diagenetic processes in Middle Jurassic sandstones and mudrocks from the Brae Area, North Sea. Clay Miner. 29, 637650.Google Scholar
Hallam, A. (1984) Continental humid and arid zones during the Jurassic and Cretaceous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 47, 195223.Google Scholar
Hallam, A. (1985) A review of Mesozoic climates. J. Geol. Soc., Lond. 142, 433445.CrossRefGoogle Scholar
Hallam, A. (1986) Role of climate in affecting late Jurassic and early Cretaceous sedimentation in the North Atlantic. Pp. 277281 in. North Atlantic Palaeoceanography (Summerhayes, C.P. & Shackleton, N.J., editors). Spec. Publ. 21. Geological Society, London.Google Scholar
Hallam, A. (1993) Jurassic climates as inferred from the sedimentary and fossil record. Phil. Trans. Roy. Soc. Lond. B341, 287296.Google Scholar
Hallam, A., Grose, J.A. & Ruffell, A.H. (1991) Paleoclimatic significance of changes in clay mineralogy across the Jurassic-Cretaceous boundary in England and France. Palaeogeogr. Palaeoclimatol. Palaeoecol. 81, 173187.Google Scholar
Jeans, C.V. (1968) The origin of the montmorillonite of the European chalk with special reference to the Lower Chalk of England. Clay Miner. 7, 311329.Google Scholar
Jeans, C.V. (1978) The origin of the Triassic clay assemblages of Europe with special reference to the Keuper Marl and Rhaetic of parts of England. Phil. Trans. Roy. Soc. Series A, 549639.Google Scholar
Jeans, C.V. (1984) Patterns of mineral diagenesis: an introduction. Clay Miner. 19, 263270.CrossRefGoogle Scholar
Jeans, C.V. (1986) Features of mineral diagenesis in hydrocarbon reservoirs: an introduction. Clay Miner. 21, 429441.CrossRefGoogle Scholar
Jeans, C.V. (1995) Clay mineral stratigraphy in Palaeozoic and Mesozoic red bed facies, onshore and offshore U.K. Pp. 3155 in. Dating and Correlating Biostratigraphi cally Barren Strata (Dunay, R.E. & Hailwood, E.A., editors). Spec. Publ. 89. Geological Society, London.Google Scholar
Jeans, C.V., Merriman, R.J. & Mitchell, J.G. (1977) Origin of Middle Jurassic and Lower Cretaceous Fuller's earths in England. Clay Miner. 12, 1144.CrossRefGoogle Scholar
Jeans, C.V., Merriman, R.J., Mitchell, J.G. & Bland, D.J. (1982) Volcanic clays in the Cretaceous of southern England and Northern Ireland. Clay Miner. 17, 105–156.Google Scholar
Jeans, C.V. & Atherton, A.F. (1989) Silicate and associated cements in an Oxfordian marine freshwater transition, Inner Moray Firth, UK North Sea. Clay Miner. 24, 317338.Google Scholar
Jeans, C.V., Mitchell, J.G., Scherer, M. & Fisher, M.J. (1994) Origin of the Permo-Triassic clay mica assemblage. Clay Miner. 29, 575589.Google Scholar
Jeans, C.V., Fallick, A.E., Fisher, M.J., Merriman, R.J., Corfield, R.M. & Manighetti, B. (1997) Clay- and zeolite-bearing Triassic sediments of Kaka Point, New Zealand: evidence of microbially influenced mineral formation from earliest diagenesis into the lowest grade of metamorphism. Clay Miner. 32, 373423.Google Scholar
Jeans, C.V., Wray, D.S., Merriman, R.J. & Fisher, M.J. (2000) Volcanogenic clays in Jurassic and Cretaceous strata of England and the North Sea Basin. Clay Miner. 35, 2555.Google Scholar
King, P., Kennedy, H., Newton, P.O., Jickells, T.D., Brand, T., Calvert, G., Etcheber, H., Head, B., Khripounoff, A., Manighetti, B. & Miquel, J.C. (1998) Analysis of total and organic carbon and total nitrogen in settling oceanic particles and a marine sediment: an interlaboratory comparison. Mar. Chem. 60, 203216.Google Scholar
Kuzvart, M. & Konta, J. (1968) Kaolin and laterite weathering crusts in Europe. Acta Univ. Carol. Geol. 12, 119.Google Scholar
Langley, K.M. (1978) Dating sediments by a K-Ar method. Nature, 276, 56–7.Google Scholar
Lippman, F. & Pamkau, H.-G. (1988) Der Mineralabstand de s Mittleren Musche lka lke s von Nagold, Wü rttemberg. Neues Jahrb. Miner. Abh. 158, 257292.Google Scholar
Macaulay, C.I., Fallick, A.E. & Haszeldine, R.S. (1993) Textural and isotopic variations in diagenetic kaolinite from the Magnus Oilfield sandstones. Clay Miner. 28, 625639.Google Scholar
McDougall, I., Polach, H.A. & Stipp, J.J. (1969) Excess radiogenic argon in subaerial basalts. Geochim. Cosmochim. Acta, 33, 14851520.Google Scholar
Mees, F. & Stoops, G. (1999) Palaeoweathering of Lower Palaeozoic rocks of the Brabant Massif, Belgium: a mineralogical and petrological analysis. Geol. J. 34, 349367.Google Scholar
Meyer, R. (1976) Continental sedimentation, soil genesis and marine transgression in the basal beds of the Cretaceous in the east of the Paris Basin. Sedimentology, 23, 235253.Google Scholar
Mitchell, J.G. & Euwe, M.G. (1988) A model of singlestage concomitant potassium-argon exchange in acidic lavas from the Erlend Volcanic complex, north of Shetland Islands. Chem. Geol. 72, 95109.Google Scholar
Mitchell, J.G. & Taka, A.S. (1984) Potassium and argon loss patterns in weathered micas: implications for detrital mineral studies with particular reference to the Triassic palaeogeography of the British Isles. Sed. Geol. 39, 2752.Google Scholar
Pearson, M.J. & Small, J.S. (1988) Illite- smectite diagenesis and palaeotemperatu res in northern North Sea Quaternary to Mesozoic shale sequences. Clay Miner. 23, 109132.CrossRefGoogle Scholar
Pearson, M.J., Watkins, D. & Small, J.S. (1982) Clay diagenesis and organic maturation in northern North Sea sediments. Pp. 665675 in: Proc. Int. Clay Conf. Bologna and Pavia (Van Olphen, H. & Veniale, F., editors). Developments in Sedimentology, 35. Elsevier, Amsterdam.Google Scholar
Pearson, M.J., Watkins, D., Pitton, J.-L., Caston, D. & Small, J.S. (1983) Aspects of burial diagenesis, organic maturation and palaeothermal history of an area in the South Viking Graben, North Sea. Pp. 161173 in: Petroleum Geochemistry and the Explora tion of Europe (Brooks, J., editor ). Blackwell, Oxford.Google Scholar
Perrin, R.M.S. (1971) The Clay Mineralogy of British Sediments. Clay Minerals Group, Mineralogical Society, London.Google Scholar
Perry, E.A. (1974) Diagenesis and the K-Ar dating of shales and clay minerals. Geol. Soc. Am. Bull. 85, 827–30.Google Scholar
Ruffell, A.H. & Batten, D.J. (1990) The Barremian- Aptian arid phase in northern Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 80, 197212.Google Scholar
Ruffell, A.H. & Rawson, P.F. (1994) Palaeoclimate control on sequence stratigraphic pattern in the late Jurassic to mid-Cretaceous, with a case study from Eastern England. Palaeogeogr. Palaeoclimatol. Palaeoecol. 110, 4354.Google Scholar
Scotchman, I.C. (1987a) Clay diagenesis in the Kimmeridge Clay Formation, onshore UK, and its relation to organic maturation. Mineral. Mag. 51, 535–51.Google Scholar
Scotchman, I.C. (1987b) Relationship between clay diagene si s and organic maturat ion in the Kimmeridge Clay Formation, onshore UK. Pp. 251–61 in: Petroleum Geology N.W. Europe (Brookes, J. & Glennie, K.W., editors ). Graham Trotman, London.Google Scholar
Shafiqullah, M. & Damon, P.E. (1974) Evaluation of K-Ar isochron methods. Geochim . Cosmochim. Acta, 38, 1341–58.CrossRefGoogle Scholar
Sladen, C.P. (1983) Trends in Early Cretaceous clay mineralogy in N.W. Europe. Zitteliana, 10, 349357.Google Scholar
Sladen, C.P. (1987) Aspects of the clay mineralogy of the Wealden and Upper Purbeck rocks. Pp. 7172 in: Geology of the Country around Hastings and Dungeness (Lake, R.D. & Shepard-Thorn, E.R., editors). Memoir of the British Geological Survey. HMSO, London.Google Scholar
Sladen, C.P. & Batten, D.J. (1984) Source-area environments of Late Jurassic and Early Cretaceous sediments in Southeast England. Proc. Geol. Assoc. 95, 149163.Google Scholar
Stoops, G. (1992) Micromorphological study of pre- Cretaceous weathering in the Brabant Massif (Belgium). Pp. 6984 in: Mineralogica l and Geochemical Records of Paleoweathering (Schmitt, J.M. & Gall, Q., editors). Mémoires Sciences de la Terre 18. Paris: École Normale Superieure des Mines de Paris.Google Scholar
Störr, M., Kuzvart, M. & Neuzil, J. (1978) Age and genesis of the weathering crust of the Bohemian Massif. Schrifter. Geol. Wiss., 11, 265281.Google Scholar
Sturt, B.A., Dalland, A. & Mitchell, J.L. (1979) The age of the sub Mid Jurassic tropical weathering profile on And€ ya, Northern Norway, and the implications for the Late Palaeozoic palaeography in the North Atlantic region. Geol. Runds. 68, 523542.Google Scholar
Tank, R.W. (1962) Clay mineralogy of selected clays from the English Wealden. Geol. Mag. 99, 128136.Google Scholar
Trunkó, L. (1996) Geology of Hungary. Gebrüder Borntraeger, Berlin, 462 pp.Google Scholar
Weir, A.H. & Rayner, J.H. (1974) An interstratified illitesmectite from Enchworth series soil in weathered Oxford Clay. Clay Miner. 10, 173188.Google Scholar
Wignall, P.B. & Ruffell, A.H. (1990) The influence of a sudden climatic change on marine deposition in the Kimmeridgian of northwest Europe. J. Geol. Soc. Lond. 147, 365371.Google Scholar