Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T00:11:54.721Z Has data issue: false hasContentIssue false

Aluminium influence on iron oxides: XVIII. The effect of Al substitution and crystal size on magnetic hyperfine fields of natural goethites

Published online by Cambridge University Press:  09 July 2018

J. Friedl
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
U. Schwertmann
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-85350 Freising-Weihenstephan, Germany

Abstract

Two sets of natural Al-substituted goethites from contrasting surface environments (24 tropical and subtropical soils vs. ten lake iron ores from Finland) were characterized by Mössbauer spectra obtained at room temperature and 4.2 K. A negative correlation between Bhf and Al substitution (R2 = 0.751) was found by combining the data of all the samples, which was slightly improved (R2 = 0.779) by taking the mean coherence length perpendicular to 111 (MCL111) into account. The effect of Al on lowering Bhf was, however, stronger for the tropical soil goethites than for those of the lake ores. This is parallelled by a corresponding difference in the unit-cell decrease per unit Al substitution. These differences are believed to result from the crystallization conditions in the two different environments.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carlson, L. (1995) Aluminium substitution in goethite in lake ore. Bull. Geol. Soc. Finland, 67, 1928.CrossRefGoogle Scholar
De Grave, E., Bowen, L.H. & Weed, S.B. (1982) Mössbauer study of aluminium substituted hematites. J. Magn. Magn. Mater. 27, 98-108.Google Scholar
Fey, M.V. & Dixon, J.B. (1981) Synthesis and properties of poorly crystalline hydrated aluminous goethites. Clays Clay Miner. 29, 91100.CrossRefGoogle Scholar
Fitzpatrick, R.W. & Schwertmann, U. (1982) AIsubstituted goethite – An indicator of pedogenic and other weathering environments in South Africa. Geoderma, 27, 335347.Google Scholar
Fysn, S.A. & Clarke, P.E. (1982) Aluminous goethite: A Mössbauer study. Phys. Chem Miner. 8, 180187.Google Scholar
Golden, D.C., Bowen, L.H., Weed, S.B. & Bigham, J.M. (1979) Mössbauer studies of synthetic and soiloccurring aluminum-substituted goethites. Soil Sci. Soc. Am. J. 43, 802808.CrossRefGoogle Scholar
Kämpf, N. & Schwertmann, U. (1982a) Quantitative determination of goethite and hematite in kaolinitic soils by X-ray diffraction. Clay Min. 17, 359363.CrossRefGoogle Scholar
Kämpf, N. & Schwertmann, U. (1982b) The 5-M-NaOH concentration treatment for iron oxides in soils. Clays Clay Miner. 30, 401408.Google Scholar
Kämpf, N. & Schwertmann, U. (1983) Goethite and hematite in a climosequence in southern Brazil and their applications in classification of kaolinitic soils. Geoderma, 29, 2739.Google Scholar
Murad, E. & Schwertmann, U. (1983) The influence of aluminium substitution and crystallinity on the M0ssbauer spectra of goethite. Clay Miner. 18, 301312.CrossRefGoogle Scholar
Schulze, D.G. (1984) The influence of aluminum on iron oxides: XIII. Unit-cell dimensions of Al-substituted goethites and estimation of Al from them. Clays Clay Miner. 32, 521529.CrossRefGoogle Scholar
Schwertmann, U. (1984) Iron oxides in some ferruginous soils in India. Clay Res. 3, 23–30.Google Scholar
Schwertmann, U. & Latham, M. (1986) Properties of iron oxides in some New Caledonian oxisols. Geoderma, 39, 105123.Google Scholar
Schwertmann, U. & Carlson, L. (1994) Aluminum influence on iron oxides: XVII. Unit-cell parameters and aluminum substitution of natural goethites. Soil Sci. Soc. Am. J. 58, 256261.Google Scholar
Stanjek, H. (1995) Variabilität im Zentimeterbereich und ihre Bedeutung ftir Bildungsprozesse von Eisenoxiden in Böden: Ein neuer methodischer Ansatz. Mitt. Dtsch. Bodenkundl. Ges. 76, 14011402.Google Scholar
Yapp, C.Y. & Poths, H. (1995) Stable hydrogen isotopes in iron oxides: III. Nonstoichiometric hydrogen in goethite. Geochim. Cosmochim. Acta, 59, 34053412.CrossRefGoogle Scholar
Zeese, R., Schwertmann, U., Tietz, G.F. & Jux, U. (1994) Mineralogy and stratigraphy of three deep lateritic profiles of the Jos Plateau (Central Nigeria). Catena, 21, 195214.CrossRefGoogle Scholar
Wolskae, & Schwertmann, U. (1993) The mechanism of solid solution formation between goethite and diaspore. Neues Jahrb. Mineral. Monatsh. 5, 213223.Google Scholar