Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-11T09:42:20.724Z Has data issue: false hasContentIssue false

Characterization of clays from the Fez area (northern Morocco) for potential uses in the ceramics industry

Published online by Cambridge University Press:  27 October 2022

Mouhssin El Halim*
Affiliation:
Laboratoire de Géosciences, Géo-Environnement et Génie civil (L3G), Département des Sciences de la Terre, Faculté des Sciences et Techniques, Université Cadi Ayyad, BP 549 – Marrakech, Morocco UR Argile, Géochimie et Environnement sédimentaires (AGEs), Département de Géologie, Quartier Agora, Bâtiment B18, Allée du six Août, 14, Sart-Tilman, Université de Liège, B-4000, Belgium Centre Jacques-Berque (CJB), Avenue Tariq Ibn Ziyad, Rabat, BP 10000, Morocco
Lahcen Daoudi
Affiliation:
Laboratoire de Géosciences, Géo-Environnement et Génie civil (L3G), Département des Sciences de la Terre, Faculté des Sciences et Techniques, Université Cadi Ayyad, BP 549 – Marrakech, Morocco
Meriam El Ouahabi
Affiliation:
UR Argile, Géochimie et Environnement sédimentaires (AGEs), Département de Géologie, Quartier Agora, Bâtiment B18, Allée du six Août, 14, Sart-Tilman, Université de Liège, B-4000, Belgium
Nathalie Fagel
Affiliation:
UR Argile, Géochimie et Environnement sédimentaires (AGEs), Département de Géologie, Quartier Agora, Bâtiment B18, Allée du six Août, 14, Sart-Tilman, Université de Liège, B-4000, Belgium

Abstract

Clays from the Saïss basin (northern Morocco) used traditionally in the ceramic industry in the Fez area were studied using mineralogical and physicochemical techniques to evaluate their potential suitability as raw materials for ceramics manufacture. X-ray diffraction was used to determine their mineralogical composition. The physical properties determined were particle-size distribution and consistency limits. The chemical composition was determined using X-ray fluorescence analysis and Fourier-transform infrared spectrometry. The structural changes of the mineral phases in the raw materials during firing were studied over a temperature range of 500–1000°C. In the pottery site from Fez, generally potters use a mixture of 25% fine clay (ARFS) from the upper part of the Miocene marls and 75% sandy clay (ARFR) from the lower part of the Miocene marls. The ARFS clay yielded very rigid specimens after firing that artisan potters would find difficult to handle so as to produce desired shapes and sizes. However, the specimens obtained from ARFR clay show signs of faltering. The mixture of these two clayey materials from this pottery site is therefore necessary to obtain the optimal paste for ceramics purposes. The chemical compositions indicated that SiO2, Al2O3, CaO and Fe2O3 are the major minerals, with trace amounts of K2O and MgO. Quartz, feldspars and clay minerals prevail in all samples. Kaolinite, illite and smectite are the dominant clay mineral phases, with traces of chlorite and interstratified illite–smectite. The classification of these samples using appropriate ternary diagrams showed that the proportions used in the mixture produce a new material with adequate characteristics for the production of traditional ceramics.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: J. Huertas

References

Achiou, B., El Omari, H., Bennazha, A., Albizane, A., Daoudi, L., Saadi, L. et al. (2016) Physicochemical and mineralogical characterizations of clays from Fez region (basin of Saiss, Morocco) in the perspective of industrial use. Journal of Materials and Environmental Science, 7, 14741484.Google Scholar
Auvray, C., Homand, F., Hoxha, D. & Didier, C. (2004) Mechanical behavior of gypsum influenced by time and hygrometry. Revue française de géotechnique, 106–107, 4151.CrossRefGoogle Scholar
Besq, A., Malfoy, C., Pantet, A., Monnet, P. & Righi, D. (2003) Physicochemical characterisation and flow properties of some bentonite muds. Applied Clay Science, 23, 56.CrossRefGoogle Scholar
Boussen, S., Sghaier, D., Chaabani, F., Jamoussi, B. & Bennour, A. (2016) Characteristics and industrial application of the Lower Cretaceous clay deposits (Bouhedma Formation), southeast Tunisia: potential use for the manufacturing of ceramic tiles and bricks. Applied Clay Science, 123, 210221.CrossRefGoogle Scholar
Burst, J.F. (1991) The application of clay minerals in ceramics. Applied Clay Science, 5, 421443.CrossRefGoogle Scholar
Cook, H.E., Johnson, P.D., Matti, J.C. & Zemmels, I. (1975) Methods of sample preparation and X-ray diffraction data analysis. X-ray mineralogy laboratory. Pp. 9991007 in: DSDP Initial Reports (Hayes, D.E. & Frakes, L.A., editors). US Government Printing Office, Washington, DC, USA.Google Scholar
Cultrone, G., Rodriguez-Navarro, C., Sebastian, E., Cazalla, O. & De La Torre, M.J. (2001) Carbonate and silicate phase reactions during ceramic firing. European Journal of Mineralogy, 13, 621634.CrossRefGoogle Scholar
Daoudi, L., El Boudour El Idrissi, H., Saadi, L., Albizane, A., Bennazha, J., Waqif, M. et al. (2014) Characteristics and ceramic properties of clayey materials from Amezmiz region (Western High Atlas, Morocco). Applied Clay Science, 102, 139147.Google Scholar
Dondi, M., Raimondo, M. & Zanelli, C. (2014) Clays and bodies for ceramic tiles: reappraisal and technological classification. Applied Clay Science, 96, 91109.CrossRefGoogle Scholar
El Boudour El Idrissi, H., Daoudi, L., El Ouahabi, M., Balo Madi, A., Collin, F. & Fagel, N. (2016) Suitability of soils and river deposits from Marrakech for the manufacturing of earthenware. Applied Clay Science, 129, 108115.CrossRefGoogle Scholar
El Boudour El Idrissi, H., Daoudi, L., El Ouahabi, M. & Fagel, N. (2018) The influence of clay composition and lithology on the industrial potential of earthenware. Construction and Building Materials, 172, 650659.CrossRefGoogle Scholar
El Halim, M., Daoudi, L., El Ouahabi, M., Amekrane, J. & Fagel, N. (2018) Mineralogy and firing characteristics of clayey materials used for ceramic purposes from Sale region (Morocco). Journal of Materials and Environmental Science, 8, 22632273.Google Scholar
El Halim, M., Daoudi, L., El Alaoui El Fels, A., Rebbouh, L., El Ouahabi, M. & Fagel, N. (2020) Non-destructive portable X-ray fluorescence (pXRF) method for the characterization of Islamic architectural ceramic: example of Saadian tombs and El Badi palace ceramics (Marrakech, Morocco). Journal of Archaeological Science: Reports, 32, 102422.Google Scholar
El Ouahabi, M., Daoudi, L., De Vleeschouwer, F., Bindler, R. & Fagel, N. (2014) Potentiality of clay raw materials from northern Morocco in ceramic industry: Tetouan and Meknes areas. Journal of Minerals and Materials Characterization and Engineering, 2, 145159.CrossRefGoogle Scholar
El Ouahabi, M., Daoudi, L., Hatert, F. & Fagel, N. (2015) Modified mineral phases during clay ceramic firing. Clays and Clay Minerals, 63, 404413.CrossRefGoogle Scholar
El Ouahabi, M, El Boudour, H., Daoudi, L., El Halim, M. & Fagel, N. (2019) Moroccan clay deposits: physico-chemical properties in view of provenance studies on ancient ceramics. Applied Clay Science, 172, 6574.CrossRefGoogle Scholar
Fiori, C., Fabbri, B., Donati, G. & Venturi, I. (1989) Mineralogical composition of the clay bodies used in the Italian tile industry. Applied Clay Science, 4, 461473.CrossRefGoogle Scholar
Hajjaji, W., Hachani, M., Moussi, B., Jeridi, K., Medhioub, M., López-Galindo, A. et al. (2010) Mineralogy and plasticity in clay sediments from north-east Tunisia. Journal of African Earth Science, 57, 4146.CrossRefGoogle Scholar
Holtz, R.D. & Kovacs, W.D. (1981) An Introduction to Geotechnical Engineering. Prentice Hall, Englewood Cliffs, NJ, USA, 747 pp.Google Scholar
Hosni, T., Daoudi, L., Remmal, T., El Boudour El Idrissi, H., El Ouahabi, M. & Fagel, N. (2021) Influence of the clay composition on the quality of traditional ceramics: example of the site of Mzouda (Central Morocco). Arabian Journal of Geosciences, 14, 2805.CrossRefGoogle Scholar
Hubert, F., Caner, L., Meunier, A. & Lanson, B., (2009) Advances in characterization of soil clay mineralogy using X-ray diffraction: from decomposition to profile fitting. European Journal of Soil Science, 60, 10931105.CrossRefGoogle Scholar
Kamseu, E., Leonelli, C., Boccaccini, D.N., Veronesi, P., Miselli, P., Giancarlo, P. & Chinje Melo, U. (2007) Characterisation of porcelain compositions using two China clays from Cameroon. Ceramics International, 33, 851857.CrossRefGoogle Scholar
Konan, K., Soro, J., Andji, J.Y., Oyetola, S. & Kra, G. (2010) Etude comparative de la déshydroxylation/amorphisation dans deux kaolins de cristallinité différente. Journal de la Société Ouest-Africaine de Chimie, 30, 2939.Google Scholar
Marsigli, M. & Dondi, D. (1997) Plasticitá delle Argille Italiane per Laterizi e Previsione del Loro Comportamento in Foggiatura, L'industria Laterizi, 46, 214222.Google Scholar
McManus, J. (1988) Grain size distribution and interpretation. Pp. 6385 in: Techniques in Sedimentology (Tucker, M.E., editor). Blackwell, Oxford, UK.Google Scholar
Mesrar, L., Lakrim, M., Akhrif, I., Raouf, J. & El Aroussi, O. (2012) Caractérisation physicochimique des argiles miocène de la région de Fez utilisées dans l'industrie céramique. Presented at: International Coference of GIS-Users, Taza, Morocco, 23–24 May.Google Scholar
Mesrar, L., Akdim, M., Akhrif, I., Lakrim, M., El Aroussi, O., Chaouni, A. & Jabrane, R. (2013) Technological valorization of the Miocene clay in the region of Fez (Morocco): characterisation and exploitation possibilities. Present Environment and Sustainable Development, 7, 310317.Google Scholar
Mitrović, A.A., Komljenović, M.M. & Ilić, B.R. (2009) Ispitivanja Mogucnosti Kori šcenja Domac ih Kaolinskih Glina Za Proizvodnju Metakaolina. Hemijska Industrija, 63, 107113.Google Scholar
Norton, F.H. (1970) Fine Ceramics Technology and Applications. McGraw-Hill Book Company, New York, NY, USA, 507 pp.Google Scholar
Saikia, N.J., Bharali, D.J., Sengupta, P., Bordoloi, D., Goswamee, R.L., Saikia, P.C. & Borthakur, P.C. (2003) Characterization, beneficiation and utilization of a kaolinite clay from Assam, India. Applied Clay Science, 24, 93103.CrossRefGoogle Scholar
Vieira, C.M.F., Sánchez, R. & Monteiro, S.N. (2008) Characteristics of clays and properties of building ceramics in the state of Rio de Janeiro, Brazil. Construction and Building Materials, 22, 781787.CrossRefGoogle Scholar