Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T12:28:22.208Z Has data issue: false hasContentIssue false

Coexistence of pyrophyllite, I-S, R1 and NH4+-rich illite in Silurian black shales (Sierra de Albarracín, NE Spain): metamorphic vs. hydrothermal origin

Published online by Cambridge University Press:  09 July 2018

B. Bauluz*
Affiliation:
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
I. Subías
Affiliation:
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
*

Abstract

A set of Silurian black shales from Sierra de Albarracín (NE Spain) corresponding to two different sections was studied to determine the relative influence of diagenesis, igneous activity, and regional tectonics on the clay-mineral genesis. The coexistence of pyrophyllite, I-S interstratifications (R1), ammonium-rich illite, potassium illite, kaolin, and chlorite is not the result of prograde evolution during diagenesis – very low-grade metamorphism. Three different stages may be inferred: (1) sedimentation of black shales (Aeronian, Lower Silurian, to basal Ludfordian, Upper Silurian) and the subsequent diagenetic process producing the coexistence of quartz, illite, kaolinite, organic matter, etc.; (2) intrusion of andesitic sills producing hydrothermal alteration and crystallization of pyrophyllite, ammonium-rich illites, smectite, I-S R1 phases and jarosite; and (3) and folding of shales and sills and development of penetrative schistosity during the late Variscan leading to illite and paragonite recrystallization reaching the anchizone grade.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auqué, L.F., Sánchez-Cela, V. & Aparicio, V. (1987) Enclaves con espinela-corindón-sillimanita en rocas andesítico-dacíticas (Noguera, Sierra de Albarracín, Teruel). Estudios Geológicos, 43, 139147.CrossRefGoogle Scholar
Bauluz, B. & Subías, I. (2006) Pirofilita - I/S - ilita amónica en las pizarras negras de la Sierra de Albarracín (Guadalajara y Teruel). Macla, 6, 8184.Google Scholar
Bauluz, B., Mayayo, M.J., Fernández-Nieto, C. & González López, J.M. (1995) Mineralogy and geochemistry of Devonian detrital rocks from the Iberian Range (Spain). Clay Minerals, 30, 381395.CrossRefGoogle Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803832.CrossRefGoogle Scholar
Capote, R. & González Lodeiro, F. (1983) La estructura herciniana en los afloramientos paleozoicos de la Cordillera Ibérica. Libro Jubilar J.M. Ríos, 1, 513529.Google Scholar
Daniels, E.J. & Altaner, S.P. (1990) Clay mineral authigenesis in coal and shale from the Anthracite region, Pennsylvania. American Mineralogist, 75, 825839.Google Scholar
Daniels, E.J., Marsak, S. & Altaner, S.P. (2006) Use of clay-mineral alteration patterns to define syntectonic permeability of joints (cleat) in Pennsylvania anthracite coal. Tectonophysics, 263, 123136.CrossRefGoogle Scholar
Drits, V.A., Lindreen, H. & Salyn, A.L. (1997) Determination of the content and distribution of fixed ammonium in illite- smectite by X-ray diffraction: application to North Sea illite-smectite. American Mineralogist, 82, 7987.CrossRefGoogle Scholar
Eugster, H.P. & Muñoz, J. (1966) Ammonium micas: possible sources of atmospheric ammonia and nitrogen. Science, 151, 683686.CrossRefGoogle ScholarPubMed
Frey, M. (1987) Very low-grade metamorphism of clastic sedimentary rocks. Pp. 958 in: Low-temperature Metamorphism (Frey, M., editor). Blackie, Glasgow.Google Scholar
Gil-Imaz, A., Pocovi, A., Lago, M., Galé, C., Arranz, E., Rillo, C. & Guerrero, E. (2006) Magma flow and thermal contraction fabric in tabular intrusions inferred from AMS analysis. A case study in a late-Variscan folded sill of the Albarracin Massif (southeastern Iberian Chain, Spain). Journal Structural Geology, 28, 641653.CrossRefGoogle Scholar
Gutierrez-Marco, J.C. & Storch, P. (1998) Graptolite biostratigraphy of the lower Silurian (Llandovery) shelf deposits of the Western Iberian Cordillera, Spain. Geological Magazine, 135, 7192.CrossRefGoogle Scholar
Hemley, J.J., Montoya, J.W., Marinenko, J.W., Luce, R.W. & Higashi, S. (1980) Equilibria in the system Al2O3—SiO2—H2O and some general implications for alteration/mineralization processes. Economic Geology, 75, 210228.CrossRefGoogle Scholar
Higashi, S. (2000) Ammonium-bearing mica and mica/ smectite of several pottery stone and pyrophyllite deposits in Japan: their mineralogical properties and utilization. Applied Clay Science, 16, 171184.CrossRefGoogle Scholar
Julivert, M., Fontbote, J.M., Ribero, A. & Coned, C. (1974) Mapa tectonico de la Peninsula Iberica y Baleares. IGME, Madrid, Spain, 13 pp.Google Scholar
Juster, T.C. (1987) Mineralogic domains in very low-grade pelitic rocks. Geology, 15, 10101013.Google Scholar
Juster, T.C., Brown, P.E. & Bailey, S.W. (1987) NH4- bearing illite in very low-grade metamorphic rocks associated with coal, northeastern Pennsylvania. American Mineralogist, 72, 555565.Google Scholar
Kisch, H.J. (1991) Illite crystallinity: Recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. Journal of Metamorphic Geology, 9, 665670.CrossRefGoogle Scholar
Kretz, R. (1983) Symbols for rock-forming minerals. American Mineralogist, 68, 277279.Google Scholar
Kubler, B. (1984) Les indicateurs des transformations physiques et chimiques dans la diagenèse. Température et calorimétrie. Pp. 489596 in: Thermométrie et Barométrie Géologiques (Lagache, M., editor). Société Francaise de Minéralogie et de Cristallographie, Paris.Google Scholar
Lago, M., Gil-Imaz, A., Pocovi, A., Arranz, E., Bastida, J., Auque, L. & Lapuente, M.P. (1996) Rasgos geológicos del magmatismo autuniense en la Sierra de Albarracín (Cadena Ibérica occidental). Cuadernos de Geología Ibérica, 20, 139157.Google Scholar
Lago, M., Arranz, E., Pocoví, A., Galé, C. & Gil-Imaz, A. (2004) Lower magmatism of the Iberian Chain, Central Spain, and its relationship to extensional tectonics. Pp 465490 in: Permo-Carboniferous Magmatism and Rifting in Europe (Wilson, M., Neumann, E.R., Davies, G.R., Timmerman, M.J., Heeremans, M. & Larsen, B.T., editors). Geological Society of London, Special Publication no. 223.Google Scholar
López-Gómez, J.J. & Arche, A. (1993) Sequence stratigraphic analysis and palaeogeographic interpretation of the Buntsandstein and Muschelkalk facies (Permo-Triassic) in the SE Iberian Range, E Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 103, 179201.CrossRefGoogle Scholar
López-Gómez, J.J., Arche, A. & Pérez-López, A. (2002) Permian and Triassic. Pp. 185212 in: The Geology of Spain (Gibbons, W. & Moreno, T., editors). Geological Society, London.CrossRefGoogle Scholar
Lozte, F. (1929) Stratigraphie und Tektonik des Keltibersichen Grundgebirges (Spanien). Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Gottingen. Math. Phys. K.N.F., 24(2), 320 pp. Berlin. In Publicaciones Extranjeras de Geología de España. Institution Lucas Mallada, 8, 315 pp.Google Scholar
Martin, J.D. (2004) Using XPowder: A software package for Powder X-Ray diffraction analysis, http://www.xpowder.com D.L. GR 1001/04.ISBN 84-609-1497-6. Spain, 105 pp.Google Scholar
Nieto, F. (2002) Ammonium illite from anchimetamorphic shales associated with anthracite in the Zemplinicum of the Western Carpathians. American Mineralogist, 87, 205216.CrossRefGoogle Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre shale. United State Geological Survey, Professional paper, 391-C, 31.Google Scholar
Šucha, V., Kraus, I., & Madejová, J. (1994) Ammonium illite from anchimetamorphic shales associated with anthracite in the Zemplinicum of the Western Carpathians. Clay Minerals, 29, 369377.CrossRefGoogle Scholar
Velde, B. (1995) Origin and Mineralogy of Clays. Springer-Verlag, Berlin, 334 pp.CrossRefGoogle Scholar
Warr, L.N. & Rice, A.H.N. (1994) Interlaboratory standardization and calibration of clay mineral crystallinity size data. Journal of Metamorphic Geology, 12, 141152.CrossRefGoogle Scholar