Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T14:07:22.335Z Has data issue: false hasContentIssue false

Controls on Clay Mineral Distribution and Chemistry in the Early Permian Rotliegend of Germany

Published online by Cambridge University Press:  09 July 2018

J. D. Platt*
Affiliation:
Geologisches Institut, Universitdt Bern, Baltzerstrasse 1, 3012 Bern, Switzerland

Abstract

Authigenic clay minerals in the German Rotliegend formed mainly at burial depths >1.5 km. Illite is the dominant cement, although kaolinite, dickite and early radial chlorite are abundant locally. Illites contain more AI and late chlorites more AI and Fe in sequences showing extensive grain dissolution. This relationship between clay chemistry and grain dissolution suggests that clay cementation is linked to grain dissolution. Sequences at relatively shallow burial depths (<3-5 km) contain less clay cement. In the more deeply buried sections, increased illite and kandite cementation, together with extensive grain dissolution, is evident where the Rotliegend is juxtaposed against Carboniferous Coal Measures. Faults also acted as important conduits for acidic fluids. Illite and kandite growth occurred at similar depths and from waters of similar isotopic composition (618O = 1-6‰ SMOW) throughout most of the Southern Permian Basin. However, the timing of illite growth varied between areas and corresponded to periods to tectonic activity.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almon, W.R. (1981) Depositional environment and diagenesis of Permian Rotliegendes sandstones in the Dutch Sector of the southern North Sea. Pp. 119-147 in: Clays and the Resource Geologist (F.J. Longstaffe, editor). Min. Ass. Canada Short Course 7.Google Scholar
Arthur, T.J., Pilling, D., Bush, D., & Macchi, L. (1986) The Leman Sandstone Formation in UK Block 49/28. Sedimentation, diagenesis and burial history. Pp. 251-266 in: Habitat of Palaeozoic Gas in N. W. Europe (J. Brooks, J. Goff & B. van Hoorn, editors). Geological Society, Special Publication 23.Google Scholar
Bailey, S.W. (1980) Structures of layer silicates. Pp. 1-124 in: Crystal Structures of Clay Minerals and their X-ray identification. (G. W. Brindley & G. Brown, editors). Mineralogical Society, London.Google Scholar
Bjørlykke, K. (1988) Sandstone diagenesis in relation to preservation, destruction and creation of porosity. Pp. 555— 588 in: Diagenesisl (G. V. Chilingarian & K. H. Wolf, editors). Developments in Sedimentology, 41.Google Scholar
Bonhomme, M.G., Buhmann, D. & Besnus, Y. (1983) Reliability of K-Ar dating of clays and silification associated with vein mineralizations in western Europe. Geol. Rundsch. 72, 105117.CrossRefGoogle Scholar
Budzinski, H. & Judersleben, G. (1980) Zur Diagenese tonarmer Sandsteine. Zeitschrift fur angewandte Geologie 26, 302308.Google Scholar
Burley, S.D. & Flisch, M. (1989) K-Ar geochronology and the timing of detrital 1/S clay illitization and authigenic illite precipitation in the Piper and Tartan fields, outer Moray Firth, UK North Sea, Clay Miner. 24, 285315.CrossRefGoogle Scholar
Curtis, C.D. (1983) Link between aluminum mobility and destruction of secondary porosity. Am. Assoc. Petrol. Geo. Bull., 67, 380384.Google Scholar
Curtis, C.D., Hughes, C.R., Whiteman, J.A. & Whittle, C.K. (1985) Compositional variation within some sedimentary chlorites and some comments on their origin. Mineral. Mag., 49, 375386.CrossRefGoogle Scholar
Drong, H.J. (1979) Diagenetische Verānderungen in den Rotliegend Sandsteinen in NW-Deutschen Becken. Geol. Rundsch. 68, 11721183.CrossRefGoogle Scholar
Dunoyer de Segonzac, G. (1970) The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentology 15, 281346.CrossRefGoogle Scholar
Eslinger, E.V. (1971) Mineralogy and oxygen isotope ratios of hydrothermal and low grade metamorphic argillaceous rocks. PhD. thesis, Case Western Reserve University, USA.Google Scholar
Fallick, A.E., Jocelyn, J. & Hamilton, P.J. (1987) Oxygen and hydrogen stable isotope systematics in Brazilian agates. Pp. 99-117 in: Geochemistry of the Earth Surface and Processes of Mineral Formation (E. Rodriguez Clemente & Y. Tardy, editors). CNRS, Madrid.Google Scholar
Gaida, K., Holzapfel, H., Mčller, H. & Schwarzhans, W. (1989) Ein Diagenese-modell in Rotliegend-Grabensystemen (abstract). Nachr. dt. geol. Ges. 41, 32.Google Scholar
Cast, R.E. (1988) Rifting im Rotliegenden Niedersachsens. Die Geowissenschaften 6, 115122.Google Scholar
Gast, R.E. (1991) The perennial Rotliegend saline lake in NW Germany. Geol. Jb. A 119, 2559.Google Scholar
Gaupp, R., Matter, A., Ramseyer, K. & Walzebuck, J.P. (1993) Diagenesis and fluid inclusions of deeply buried Permian (Rotliegende) gas reservoirs, northwest Germany. Am. Assoc. Petrol. Geol. Bull. 77, 11111128.Google Scholar
Giles, M.R. & de Boer, R.B. (1990) Origin and significance of redistributional secondary porosity. Marine Petrol. Geol. 7, 378397.CrossRefGoogle Scholar
Glennie, K.W. (1972) Permian Rotliegendes of NW Europe interpreted in light of modem desert sedimentation studies. Am. Assoc. Petrol. Geol. Bull. 56,1048-1071.Google Scholar
Glennie, K.W. (1990) Early Permian-Rotliegend. Pp. 120-152 in: Introduction to the Petroleum Geology of the North Sea (third edition) (K. Glennie, editor). Blackwell Scientific, Oxford.Google Scholar
Glennie, K.W. & Buller, A.T. (1983) The Permian Weissliegend of NW Europe: The partial deformation of aeolian dune sands caused by the Zechstein transgression. Sedim. Geol. 35, 4381.CrossRefGoogle Scholar
Goodchild, M.W. & Whitaker, J.H.M. (1986) A petrographic study of the Rotliegendes Sandstone reservoir (Lower Permian) in the Rough Gas Field. Clay Miner. 21, 459477.CrossRefGoogle Scholar
Gralla, P. (1988) Das Oberrotliegende in NW-Deutschland—Lithostratigraphie und Faziesanalyse. Geol. Jb. AI 06, 359.Google Scholar
Hancock, N.J. (1978) Possible causes of Rotliegend sandstone diagenesis in northern W. Germany. J. Geol. Soc. Lond. 135, 3540.CrossRefGoogle Scholar
Hunt, J.M. (1979) Petroleum Geochemistry and Geology. W. H. Freeman & Co., San Francisco.Google Scholar
Land, L.S. & Dutton, S.P. (1978) Cementation of a Pennsylvanian deltaic sandstone: Isotopic data. J. Sed. Pet. 48, 11671176.Google Scholar
Lee, M. (1984) Diagenesis of the Permian Rotliegendes sandstone, North Sea: KJAr, 0IS!016 and petrologic evidence. PhD thesis, Case Western Reserve University, USA.Google Scholar
Lee, M., Aronson, J.L. & Savin, S.M. (1989) Timing and conditions of Permian Rotliegende Sandstone diagenesis, southern North Sea: K/Ar and oxygen isotopic data. Am. Assoc. Petrol. Geol. Bull. 73, 195215.Google Scholar
Liewig, N., Mossman, J-R. & Clauer, N. (1987) Datation isotopique K-Ar d’argiles diagenetiques de reservoirs greseux: mise en evidence d’anomalies thermiques du Lias infērieur en Europe nord-occidentale. C. R. Acad. Sc. Paris, 304 Serie II.Google Scholar
Nagtegaal, P. (1979) Relationship of facies and reservoir quality in Rotliegendes desert sandstones, southern North Sea Region. J. Petrol. Geol. 1, 145158.CrossRefGoogle Scholar
Neugebauer, H.J. & Walzebuck, J.P. (1987) A modelling theory for cratonic basins and their hydrocarbon accumulations. 12th World Petroleum Congress, Houston, 9-17.Google Scholar
McBride, E.F. (1963) A classification of common sandstones. J. Sed. Pet. 33, 664669.Google Scholar
McHardy, W.J., Wilson, M.J. & Tait, J.M. (1982) Electron microscope and X-ray diffraction studies of filamentous illitic clay from sandstones of the Magnus Field. Clay Miner. 17, 2339.CrossRefGoogle Scholar
Platt, J.D. (1991) The diagenesis of Early Permian Rotliegend deposits from northwest Germany. PhD. thesis, Bern University, Switzerland.Google Scholar
Plein, E. (1978) Rotliegend-Ablagerungen im Norddeutschen Becken. Z. dt geol. Ges. 129, 7197.Google Scholar
Pye, K. & Krinsley, D.H. (1986) Diagenetic carbonate and evaporite in Rotliegend aeolian sandstones of the southern North Sea: their nature and relationship to secondary porosity development. Clay Miner. 21, 443458.CrossRefGoogle Scholar
Rossel, N.C. (1982) Clay mineral diagenesis in Rotliegend aeolian sandstones of the southern North Sea. Clay Miner. 17, 6977.CrossRefGoogle Scholar
Savin, S.M. & Lee M. (1988) Isotopic studies of phyllosilicates. Pp. 189-223 in: Hydrous Phyllosilicates (Exclusive of Micas) (S.W. Bailey, editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, DC. Google Scholar
Seemann, U. (1979) Diagenetically formed interstitial clay minerals as a factor in Rotliegend sandstone reservoir quality in the North Sea. J. Petrol. Geol. 1, 5562.CrossRefGoogle Scholar
Seemann, U. (1982) Depositional facies, diagenetic clay minerals and reservoir quality of Rotliegend sediments in the Southern Permian Basin (North Sea): a review. Clay Miner. 17, 5567.CrossRefGoogle Scholar
Surdam, R.C. & Crossey, L.J. (1985) Mechanisms of organic/inorganic interactions in sandstone/shale sequences. Pp. 177-279 in: Relationship of Organic Matter and Mineral Diagenesis. Soc. Econ. Paleont. Miner. Short Course, 18CrossRefGoogle Scholar
Walker, T.R., Waugh B. & Crone, J.A. (1978) Diagenesis in first-cycle desert alluvium of Cenozoic age, southwestern US and northwestern Mexico. Geol. Soc. Am. Bull. 89, 1932.2.0.CO;2>CrossRefGoogle Scholar
Walzebuck, J.P. (1989) Entwicklung von Kohlenwasserstoff-explorationszielen in tief versenkten Speichersand- steinen mit Hilfe von Modellrechnungen. Erdbl Erdgas 5, 200203.Google Scholar
Warren, E. & Curtis C. (1989) The chemical composition of authigenic illite within two sandstone reservoirs as analysed by ATEM. Clay Miner. 24, 137156.Google Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals (Developments in Sedimentology, 15) Elsevier, Amsterdam.Google Scholar
Wolf, M. & Hagemann, H.W. (1987) Inkohlung und Geothermik in mesund palāozoischen Sedimenten der Nordschweiz und Vergleich zu Inkohlungsdaten aus Siiddeutschland. Eclogae geol. Helv. 80, 535542.Google Scholar
Ziegler, P.A. (1990) Geological Atlas of Western and Central Europe. (2nd edition). Shell Internationale Petroleum Maatschappij B. V., The Hague.Google Scholar
Zimmerle, W. & Rösch, H. (1990) Petrogenic significance of dickite in European sedimentary rocks. Zbl. Geol. Palāont. Teil 1 8, 11751196.Google Scholar