Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T01:17:50.711Z Has data issue: false hasContentIssue false

The crystallinity of several Spanish kaolins: correlation with sodium amylobarbitone release

Published online by Cambridge University Press:  09 July 2018

R. Delgado
Affiliation:
Departanwnto de Edafologíay Química Agricola
G. Delgado
Affiliation:
Departanwnto de Edafologíay Química Agricola
A. Ruiz
Affiliation:
Deparlamento de Farmacia y Tecnología Farmaceútica, Faeullatl de Farmacia, Universidad de Granada, E-18071 Granada, Spain
V. Gallardo
Affiliation:
Deparlamento de Farmacia y Tecnología Farmaceútica, Faeullatl de Farmacia, Universidad de Granada, E-18071 Granada, Spain
E. Gamiz
Affiliation:
Departanwnto de Edafologíay Química Agricola

Abstract

Six Spanish kaolins were studied to determine the potential application of their crystallinity for pharmaceutical purposes. Particular attention was paid to the effect of crystallinity on sodium amylobarbitone release in water, when the drug was prepared as granulates with kaolin. Crystallinity was estimated empirically in various granulometric kaolin fractions by examining X-ray diffraction (XRD) patterns, infrared spectra and morphology as shown by scanning electron microscopy (SEM). Crystallinity was usually moderate with a mean Hinckley index of (1.69. Statistically significant relationships were found between the XRD indices and other kaolin characteristics such as total iron content and mean particle size. The different degrees of crystallinity also appear to be related to the fabric type and morphology of individual aggregates and particles (SEM). The release of sodium amylobarbitone increases with kaolin crystallinity, as estimated by the indices HB1 (Hughes & Brown, 1979) and RWI (Range & Weiss, 1969), according to the formula y = 43.668 + 3.631 HBI -84.711 RWI. Our findings suggest the possibility of preparing sustained-release formulations with controlled drug release by using kaolins of different degrees of crystallinity as excipients.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, T. (1981) Particle Size Measurement I: Particle Size Determination. Chapman & Hall, London.Google Scholar
Arencibia, A. & Lopez, J. (1977) Estabilidad del volumen de sedimentation de suspensiones de caolin. floculados con glicocola, frente a los cambios de volumen de la fase dispersante. Cienc. Ind. Farm. 10, 4648.Google Scholar
Armstrong, N.A. & Clarke, C.D. (1976) Adsorption sites of kaolin. J. Phurm. Sci. 65, 373375.CrossRefGoogle ScholarPubMed
Bonadeo, I. (1963) Tratado de Cosmetica Moderna. Cientffico-Medica, Barcelona.Google Scholar
Bookin, A.S., Drits, V.A., Planjon, A. & Tchoubar, C. (1989) Stacking faults in kaolin minerals in the light of real structural features. Clays Clay Miner. 34, 297307.Google Scholar
Brindley, G.W. & Souza-Santos, A. (1966) A new variety of kaolin group mineral and the problem of finding a suitable nomenclature. Proc. Int. Clay Conf., Jerusalem, 2, 39.Google Scholar
Brindley, G.W., CHIH-CHUN KAO, Harrison, J.L., Lipsicas, M. & Raythatha, R. (1986) Relation between structural disorder and other characteristics of kaolinites and dickites. Clays Clay Miner. 34, 239249.Google Scholar
British Pharmacopoeia (1988) Medicines Commission, Vol. 1, Pharmaceutical Press, London.Google Scholar
Budavari, S. (editor) (1989) The Merck Index, 11th edn, Merck & Co. Inc. Google Scholar
Carter, D.L., Mortland, M.M. & Kemper, W.D. (1986) Specific surface. Pp. 413-423 in: Methods of Soil Analysis. Part I. Physical and Mineralogical Methods (Klute, A., editor) Agronomy Monograph no. 9 (2nd edn). Madison, USA.Google Scholar
Cases, J.M., Lietard, O., Yvon, J. & Delon, J.F. (1982) Etude des proprietes cristallochimiques, morphologiques, superficielles de kaolinites dfoordonnees. Bull. Mineral. 105, 439455.Google Scholar
Cicel, B. & Kranz, G. (1981) Mechanism of montmorillonite structure degradation by percussive grinding. Clay Miner. 16, 151162.Google Scholar
Conley, R.F. & Lloyd, M.K. (1971) Adsorption studies on kaolinites II. Adsorption of amines. Clays Clay Miner. 19, 273282.Google Scholar
Cornejo, J., Hermosin, M.C., White, J.L., Barnes, J.R. & Hem, S.L. (1983) Role of ferric iron in the oxidation of hydrocortisone by sepiolite and palygorskite. Clays Clay Miner. 31, 109112.Google Scholar
Cornejo, J., Hermosin, M.C., White, J.L., Peck, G.E. & Hem, S.L. (1980) Oxidative degradation of hydrocortisone in presence of attapulgite. J. Pharm. Sci. 69, 945947.Google Scholar
Cruz-Cumplido, M., Sow, C. & Fripiat, J.J. (1982) Spectre infrarouge des hydroxyles, cristallinite et energie de cohesion des kaolins. Bull. Mineral. 105, 493–198.Google Scholar
Ecanow, B. & Mrtek, R.G. (1971) Powder. Pp. 731-747 in: Dispensing of Medication (Martin, E.W., editor). Mack.Google Scholar
Galan, E. (1972) Caolinesespaholes: Geologi'a, mineralogia y genesis. PhD thesis, Univ. Complutense, Madrid, Spain.Google Scholar
Galan, E., Liso, M.J. & Forteza, M. (1985) Minerales utilizados en la industria farmaceutica. Bol. Soc. Esp. Min. 8, 369378.Google Scholar
Gamiz, E. (1987) Caracterizacion de caolines, talcos y benlonitas espaholes, para su posible aplicacion en Farmacia. PhD thesis, Univ. Granada, Spain.Google Scholar
Gennaro, A.E. (Ed.) (1985) Remington's Pharmaceutical Sciences 17th edn. Mack.Google Scholar
Gonzalez Garcia, S. & SANCHEZ Camazano, M. (1968) Differentiation of kaolinite from chlorite by treatment with dimethylsulphoxide. Clay Miner. 7, 446451.Google Scholar
Heller-Kallai, L., Huard, E. & Prost, R. (1991) Disorder induced by intercalation of DMSO from kaolinite. Clay Miner. 26, 245253.Google Scholar
Hermosin, M.C., Cornejo, J., White, J.L. & Hem, S.L. (1981) Sepiolite, a potential excipient for drugs subject to oxidative degradation. J. Pharm. Sci. 70, 189192.Google Scholar
Hinckley, D.N. (1963) Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Proc. 11th Nat. Clays Clay Miner. Conf. Canada, 229-235.Google Scholar
Holmgren, G.S. (1967) A rapid dithionite-citrate extractable iron procedure. Soil Sci. Soc. Am. J. 31, 210211.Google Scholar
Hughes, J.C. & Brown, G. (1979) A crystallinity index for soil kaolins and its relation to parent rock, climate and soil maturity. J. Soil Sci. 30, 557563.Google Scholar
Jellinek, S.J. (1972) Formulation and Function of Cosmetics. Wiley Interscience, Toronto.Google Scholar
Jepson, N.B. (1988) Structural iron in kaolinites and in associated ancillary minerals. Pp. 467-536 in: Iron in Soils and Clay Minerals (Stucki, J.W., Goodman, B.A. & Schwertmann, U., editors). D. Reidel, Dordrecht, Holland.Google Scholar
Keller, W.D. (1978) Classification of kaolins exemplified by their textures in scan electron micrographs. Clays Clay Miner. 26, 120.Google Scholar
Keller, W.D. & Haenni, R.P. (1978) Effects of micro-sized mixtures of kaolin minerals on properties of kaolinites. Clays Clay Miner. 26, 384396.Google Scholar
Klug, H.P. & Alexander, L.E.C. (1976) X-ray Diffraction Procedures for Polycrystalline and Amorphous Material. Wiley, New York.Google Scholar
Koster, H.M. & Brandl, M. (1991) Mineralogy and geochemistry of primary kaolins and related kaolinitic clays in NE-Bavaria. Proc. 7th Euroclay Conf., Dresden, 641-648.Google Scholar
Lietard, O. (1977) Contribution d I'etude des proprietes physicochemiques, cristallographiques et morphologiques des kaolins. PhD thesis, Univ. Nancy, France.Google Scholar
Lloyd, M.K. & Conley, R.F. (1970) Adsorption studies on kaolinites. Clays Clay Miner. 18, 37–16.Google Scholar
Martindale, C. (1982) The Extra Pharmacopoeia (28 ed.). Pharm. Soc. of Great Britain, Pharm. Press, London.Google Scholar
Mestdagh, M., Herbillon, A.J., Rodriquez, L. & Rouxhet, P.G. (1982) Evaluation du role du fer structural sur la cristallinite des kaolinites. Bull. Mineral. 5, 457–166.Google Scholar
Murray, H.H. & Lyons, S.C. (1956) Correlation of papercoating quality with degree of crystal perfection of kaolinite. Clays Clay Miner. 4, 3141.Google Scholar
Murray, H.H. & Lyons, S.C. (1960) Further correlations of kaolinite crystallinity with chemical and physical properties. Clays Clay Miner. 8, 1117.Google Scholar
Niskanen, E. (1964) Reduction of orientation effects in the quantitative X-ray diffraction analysis of kaolin minerals. Am. Miner. 49, 705714.Google Scholar
Plançon, A. & Tchoubar, C. (1977a) Determination of structural defects in phyllosilicates by X-ray powder diffraction. I. Principle of calculation of the diffraction phenomenon. Clays Clay Miner. 25, 430435.Google Scholar
Plançon, A. & Tchoubar, C. (1977b) Determination of structural defects in phyllosilicates by X-ray powder diffraction. II. Nature and proportion of defects in natural kaolinites. Clay Clay Miner. 25, 436450.Google Scholar
Plançon, A. & Zacharie, C. (1990) An expert system for the structural characterization of kaolinites. Clay Miner. 25, 249260.Google Scholar
Plançon, A., Giese, R.F. & Snyder, R. (1988) The Hinckley index for kaolinites. Clay Miner. 23, 249260.Google Scholar
Range, K.J. & Weiss, A. (1969) Uber das Verhalten von Kaolinit bei hohen Drücken. Ber. Deut. Keram. Ges. 46, 231288.Google Scholar
Range, K.J., Range, A. & Weiss, A. (1969) Fire-clay type kaolinite or fire clay mineral? Experimental classification of kaolinite-halloysite minerals. Proc. 4th Int. Clay Conf., Tokyo, 3-13.Google Scholar
Ruiz Cruz, M.D. & Galan, E. (1991) Relations between some kaolinite crystallinite indices: Applications to geological surveys. Proc. 7th Euroclay Conf. Dresden, 889-894.Google Scholar
Scheffer, F. & Schachtschabel, P. (1966) Lehrhuch der Bodenkunde. Enke Verlag, Stuttgart.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. U.S. Geol. Surv. Prof. Pap. 391, 31.Google Scholar
Sobhi, A.S., Shibl, A.M. & Abdullah, M. (1980) Influence of various agents on adsorption capacity of kaolin for Pseudomonas aeruginosa toxin. J. Pharm. Sci. 69, 12381239.Google Scholar
Tchoubar, C., Plancon, A., Ben Brahim, J., Clinard, C. & Sow, C. (1982) Caracteristiques structurales des kaolinites desordonnees. Bull. Mineral. 105, 477-191.Google Scholar
Thiry, M. (1982) Les kaolinites des argiles de Provins: Geologie et cristallinite. Bull. Mineral. 105, 521526.Google Scholar
Weaver, C.E. Clay, Muds and Shales. Developments in Sedimentology 44, Elsevier, Amsterdam.Google Scholar
Wiegmann, J., Kranz, G. & Olschewski, C. (1991) About the degree of the order-disorder in kaolinites. Proc. 7th Euroclay Conf. Dresden, 1169-1173.Google Scholar
Yvon, J., Cases, J.M., Lietard, O., Garin, P. & Lhote, F.L. (1980) Influence des proprietes des charges kaoliniques sur les performances des caoutchoucs naturels charges. Clay Miner. 15, 351368.Google Scholar