Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T08:52:41.241Z Has data issue: false hasContentIssue false

Detailed clay mineralogy of the Triassic-Jurassic boundary section at Kendlbachgraben (Northern Calcareous Alps, Austria)

Published online by Cambridge University Press:  09 July 2018

N. Zajzon*
Affiliation:
Institute of Mineralogy and Geology, University of Miskolc, Egyetemváros, Miskolc, Hungary
F. Kristály
Affiliation:
Institute of Mineralogy and Geology, University of Miskolc, Egyetemváros, Miskolc, Hungary
J. Pálfy
Affiliation:
Department of Physical and Applied Geology, Eötvös University, Budapest, Hungary Research Group for Paleontology, Hungarian Academy of Sciences–Hungarian Natural History Museum–Eötvös University, Budapest, Hungary
T. Németh
Affiliation:
Institute for Geochemical Research, Hungarian Academy of Sciences and Department of Mineralogy, Eötvös University, Budapest, Hungary

Abstract

The Triassic-Jurassic boundary (TJB) is marked by one of the five largest Phanerozoic mass extinctions. To constrain existing models for TJB events, we obtained a stratigraphically highly resolved dataset from a marine section at Kendlbachgraben, Austria.

The topmost Triassic Kössen Formation contains low to medium-charged smectite and vermiculite as alteration products of mafic-ultramafic minerals. The clay minerals in the boundary mudstone are kaolinite ⩾ illite + muscovite ⨠ smectite > chlorite. Predominant kaolinite suggests humid climate and abundant terrigenous input. In the lowermost Jurassic, the clay mineral pattern changes to illite + muscovite ⨠ kaolinite ⨠ smectite, which reflects change to less humid and more moderate climate.

The topmost Kössen Formation also contains clay spherules. Their composition, shape and size indicate that they are alteration products of airborne volcanic glass droplets solidified in the air, settled in the sea and altered rapidly with negligible transport in terrestrial or marine environments. Our data are consistent with sudden climatic change at the TJB, as a result of large-scale volcanic activity of the Central Atlantic Magmatic Province which produced distal airfall volcanic ash.

Type
12th George Brown Lecture
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlberg, A., Olsson, I. & Šimkevičius, P. (2003) Triassic-Jurassic weathering and clay mineral dispersal in basement areas and sedimentary basins of southern Sweden. Sedimentary Geology, 161, 15–29.CrossRefGoogle Scholar
Barshad, I. (1954) Cation exchange in micaceous minerals. II. Replaceability of ammonium and potassium from vermiculite, biotite, and montmorillonite. Soil Science, 78, 57–76.CrossRefGoogle Scholar
Bonis, N.R., Kürschner, W. M. & Krystyn, L. (2009) A detailed palynological study of the Triassic-Jurassic transition in key sections of the Eiberg Basin (Northern Calcareous Alps, Austria). Review of Palaeobotany and Palynology, 156, 376–400.CrossRefGoogle Scholar
Brański, P. (2009) Influence of palaeoclimate and the greenhouse effect on Hettangian clay mineral assemblages (Holy Cross Mts. area, Polish Basin). Geological Quarterly, 53, 363–368.Google Scholar
Brański, P. (2010) Kaolinite peaks in early Toarcian profiles from the Polish Basin - an inferred record of global warming. Geological Quarterly, 54, 15–24.Google Scholar
Dera, G., Pellenard, P., Neige, P., Deconinck, J.F., Puceat, E. & Dommergues, J. L. (2009) Distribution of clay minerals in Early Jurassic Peritethyan seas: Palaeoclimatic significance inferred from multiproxy comparisons. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 39–51.CrossRefGoogle Scholar
Golebiowski, R. (1990) The Alpine Kössen Formation, a key for European topmost Triassic correlations. Albertiana, 8, 25–35.Google Scholar
Golebiowski, R. & Braunstein, R. E. (1988) A Triassic-Jurassic boundary section in the Northern Calcareous Alps (Austria). IGCP 199 “Rare Events in Geology”. Berichte Der Geologischen Bundesanstalt, 15, 8. Gorbunov, N. I. & Gradusov, B. P. (1966) Methods of highly dispersed mineral determination. Soil Science, 6, 105–117.Google Scholar
Hallam, A. & Wignall, P. B. (1999) Mass extinctions and sea-level changes. Earth-Science Reviews, 48, 217–250.CrossRefGoogle Scholar
Hesselbo, S.P., Robinson, S.A., Surlyk, F. & Piasecki, S. (2002) Terrestrial and marine mass extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: A link to the initiation of massive volcanism? Geology, 30, 251–254.2.0.CO;2>CrossRefGoogle Scholar
Hesselbo, S.P., McRoberts, C. A. & Pálfy, J. (2007) Triassic-Jurassic boundary events: Problems, progress, possibilities. Pal a eogeography, Palaeoclimatology, Palaeoecology, 244, 1–10.Google Scholar
Hillebrandt, A.v., Krystyn, L. & Kuerschner, W. M. (2007) A candidate GSSP for the base of the Jurassic in the Northern Calcareous Alps (Kuhjoch section, Karwendel Mountains, Tyrol, Austria ). International Subcommission on Jurassic Stratigraphy Newsletter, 34, 2–20.Google Scholar
Hillebrandt, A. v. & Krystyn, L. (2009) On the oldest Jurassic ammonites of Europe (Northern Calcareous Alps, Austria) and their global significance. Neues Jahrbuch fü r Geologie und Palä ontologie Abhandlungen, 253, 163–195.Google Scholar
Kürschner, W.M., Bonis, N. R. & Krystyn, L. (2007) Carbon-isotope stratigraphy and palynostratigraphy of the Triassic-Jurassic transition in the Tiefengraben section, Northern Calcareous Alps (Austria). Palaeogeography, Palaeoclimatology, Palaeoecology, 244, 257–280.Google Scholar
Marzoli, A., Renne, P.R., Piccirillo, E.M., Ernesto, M., Bellieni, G. & De Min, A. (1999) Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province. Science, 284, 616–618.CrossRefGoogle ScholarPubMed
Michalík, J., Lintnerová, O., Gaździcki, A. & Soták, J. (2007) Record of environmental changes in the Triassic–Jurassic boundary interval in the Zliechov Basin, Western Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology, 244, 71–88.CrossRefGoogle Scholar
Michalík, J., Biroň, A., Lintnerová, O., Götz, A. & Ruckwied, K. (2010) Climate change at the Triassic/ Jurassic boundary in the northwestern Tethyan realm, inferred from sections in the Tatra Mountains (Slovakia). Acta Geologica Polonica, 60, 535–548.Google Scholar
Morante, R. & Hallam, A. (1996) Organic carbon isotopic record across the Triassic-Jurassic boundary in Austria and its bearing on the cause of the mass extinction. Geology, 24, 391–394.2.3.CO;2>CrossRefGoogle Scholar
Morbey, S.J. (1975) The palynostratigraphy of the Rhaetian stage, Upper Triassic, in the Kendelbachgraben, Austria. Palaeontographica, Abteilung B, 152, 1–75.Google Scholar
Nomade, S., Knight, K.B., Beutel, E., Renne, P.R., Verati, C., Feraud, G., Marzoli, A., Youbi, N. & Bertrand, H. (2007) Chronology of the Central Atlantic Magmatic Province: Implications for the Central Atlantic rifting processes and the Triassic-Jurassic biotic crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 244, 326–344.CrossRefGoogle Scholar
Olsen, P.E., Kent, D.V., Sues, H.-D., Koeberl, C., Huber, H., Montanari, A., Rainforth, E.C., Fowell, S.J., Szajna, M. J. & Hartline, B. W. (2002) Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary. Science, 296, 1305–1307.CrossRefGoogle Scholar
Pálfy, J. (2003) Volcanism of the Central Atlantic Magmatic Province as a potential driving force in the end-Triassic mass extinction. Pp. 255–267 in: The Central Atlantic Magmatic Province: Insights from fragments of Pangea. (W.E. Hames, J.G. McHone, P.R. Renne & C. Ruppel, editors) Geophysical Monograph Series, 136, Washington DC, American Geophysical Union.CrossRefGoogle Scholar
Pálfy, J. & Zajzon, N. (in press) Environmental changes across the Triassic–Jurassic boundary and coeval volcanism inferred from elemental geochemistry and mineralogy in the Kendlbachgraben section (Northern Calcareous Alps, Austria). Earth and Planetary Science Letters.Google Scholar
Pálfy, J., Demény, A., Haas, J., Hetényi, M., Orchard, M. J. & Vetoʺ, I. (2001) Carbon isotope anomaly and other geochemical changes at the Triassic-Jurassic boundary from a marine section in Hungary. Geology, 29, 1047–1050.2.0.CO;2>CrossRefGoogle Scholar
Pieńkowski, G., Niedźwiedzki, G. & Waksmundzka, M. (2012) Sedimentological, palynological, and geochemical studies of the terrestrial Triassic–Jurassic boundary in north-western Poland. Geological Magazine, 149, 308–332.CrossRefGoogle Scholar
Raup, D. M. & Jr.Sepkoski, J. J. (1982) Mass extinctions in the marine fossil record. Science, 215, 1501–1503.CrossRefGoogle ScholarPubMed
Rieder, M., Cavazzini, G., D’Yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Müller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J., Sassi, F.P., Takeda, H., Weiss, Z. & Wones, D. R. (1998) Nomenclature of the micas. The Canadian Mineralogist, 36, 905–912.Google Scholar
Righi, D. & Meunier, A. (1995) Origin of clays by rock weathering and soil formation. Pp. 43–161 in: Origin and Mineralogy of Clays (Velde, B., editor). Springer, Berlin, Heidelberg.Google Scholar
Roberson, H. E. & Jonas, E. C. (1965) Clay minerals intermediate between illite and montmorillonite. American Mineralogist, 80, 766–70.Google Scholar
Robert, C. & Chamley, H. (1991) Development of early Eocene warm climates, as inferred from clay mineral variations in oceanic sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 98, 315–332.Google Scholar
Ruffell, A. McKinley, J. M. & Worden, R. H. (2002) Comparison of clay mineral stratigraphy to other palaeoclimate indicators in the Mesozoic of NW Europe. Philosophical Transaction of the Royal Society of London A, 360, 675–693.Google ScholarPubMed
Ruhl, M., Kuerschner, W. M. & Krystyn, L. (2009) Triassic-Jurassic organic carbon isotope stratigraphy of key sections in the western Tethys realm (Austria). Earth and Planetary Science Letters, 281, 169–187.CrossRefGoogle Scholar
Schoene, B., Guex, J., Bartolini, A., Schaltegger, U. & Blackburn, T. J. (2010) Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology, 38, 387–390.CrossRefGoogle Scholar
Środoń, J. (1999) Use of clay minerals in reconstructing geological processes: recent advances and some perspectives. Clay Minerals, 34, 27–37.CrossRefGoogle Scholar
Suess, E. & Mojsisovics, E. (1868) Studien über die Trias-und Jurabildungen in den östlichen Alpen. Die Gebirgsgruppe des Osterhornes. Jahrbuch des kaiserlich-königlichen geologischen Reichanstalt, 18, 168–200.Google Scholar
Tóth, E. (2007) Analytical practice and crystal chemistry of the celadonite-glauconite group. The crystal chemistry of glauconitisation, based on some Hungarian examples. PhD Thesis, Department of Mineralogy, Eötvös Loránd University, Budapest, Hungary. 275 pp. (in Hungarian with English abstract, figures, tables and captions).Google Scholar
van de Schootbrugge, B., Quan, T.M., Lindstrom, S., Puttmann, W., Heunisch, C., Pross, J., Fiebig, J., Petschick, R., Rohling, H.G., Richoz, S., Rosenthal, Y. & Falkowski, P. G. (2009) Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nature Geoscience, 2, 589–594.CrossRefGoogle Scholar
Ward, P.D., Haggart, J.W., Carter, E.S., Wilbur, D., Tipper, H. W. & Evans, T. (2001) Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction. Science, 292, 1148–1151.CrossRefGoogle ScholarPubMed
Velde, B. & Meunier, A. (2008) The Origin of Clay Minerals in Soils and Weathered Rocks. Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
Weaver, C.E. (1958) A discussion on the origin of clay minerals in sedimentary rocks. Clays and Clay Minerals, 566, 159–173.Google Scholar