Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T01:23:26.703Z Has data issue: false hasContentIssue false

Effect of the organic groups of difunctional silanes on the preparation of coated clays for olefin polymer modification

Published online by Cambridge University Press:  09 July 2018

F. E. Monasterio*
Affiliation:
Instituto de Investigaciones para la Industria Química - INIQUI-CONICET, Consejo de Investigaciones - CIUNSa, Facultad de Ingeniería - UNSa, Buenos Aires 177-4400, Salta, Argentina
M. L. Dias
Affiliation:
Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, IMA/UFRJ, C.P. 68525, 21945-970, Rio de Janeiro, Brazil
V. J. R. R. Pita
Affiliation:
Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, IMA/UFRJ, C.P. 68525, 21945-970, Rio de Janeiro, Brazil
E. Erdmann
Affiliation:
Instituto de Investigaciones para la Industria Química - INIQUI-CONICET, Consejo de Investigaciones - CIUNSa, Facultad de Ingeniería - UNSa, Buenos Aires 177-4400, Salta, Argentina
H. A. Destéfanis
Affiliation:
Instituto de Investigaciones para la Industria Química - INIQUI-CONICET, Consejo de Investigaciones - CIUNSa, Facultad de Ingeniería - UNSa, Buenos Aires 177-4400, Salta, Argentina

Abstract

Sodium montmorillonite (MMT) was organically modified with hexadecyltrimethyl-ammonium ions and subsequently treated with dichlorosilanes and water, aimed at in situ silane condensation polymerization and modification of clay platelets by polysiloxane coatings. Dimethyldichlorosilane, methylphenyldichlorosilane, and diphenyldichlorosilane were used to produce three siloxane-modified organoclays. The structure and morphology of the clay materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric studies (TG) and scanning electron microscopy (SEM). XRD results showed that the silanes were effectively polymerized in the clay galleries, forming a nanocomposite of intercalated particles. A fraction of the siloxane formed is bonded to the clay surface by covalent siloxane bonds. Strong structural differences in both morphology and thermal stability of the materials may occur when changing methyl or phenyl groups in the siloxane structure. The formation mechanism of these intercalated nanocomposite particles is considered. Finally, these modified clays were incorporated in an olefin polymer and morphological analyses using transmission electron microscope (TEM) images were carried out.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandre, M. & Dubois, P. (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering, 28, 163.Google Scholar
Annabi-Bergaya, F. (2008) Layered clay minerals. Basic research and innovative composite applications. Microporous and Mesoporous Materials, 107, 141148.CrossRefGoogle Scholar
Bauer, F., Gläsel, H.-J., Decker, U., Ernst, H., Freyer, A., Hartmann, E., Sauerland, V. & Mehnert, R. (2003) Trialkoxysilane grafting onto nanoparticles for the preparation of clear coat polyacrylate systems with excellent scratch performance. Progress in Organic Coatings, 47, 147153.CrossRefGoogle Scholar
Beigbeder, A., Bruzaud, S., Médéric, P., Aubry, T. & Grohens, Y. (2005) Rheological characterization of polydimethylsiloxane/HTiNbO5 nanocomposites prepared by different routes. Polymer, 46, 1227912286.Google Scholar
Camino, G., Lomakin, S.M. & Lageard, M. (2002) Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms. Polymer, 43, 20112015.Google Scholar
Dai, J.C. & Huang, J.T. (1999) Surface modification of clays and clay-rubber composite. Applied Clay Science, 15, 5165.Google Scholar
Daniel, L.M., Frost, R.L. & Zhu, H.Y. (2008) Edgemodification of laponite with dimethyl-octylmethoxysilane. Journal of Colloid and Interface Science, 321, 302309.CrossRefGoogle ScholarPubMed
Frost, R.L., Zhu, J., He, H., Yuan, P. Tao, Q., Shen, W. & Bostrom, T.E. (2008) In-situ synthesis of surfactant/silane modified hydrotalcites. Journal of Colloid and Interface Science, 319, 498504.Google Scholar
Fujii, T., Hiramatsu, M. & Nawata, M. (1999) Formation of Si-based organic thin films with low dielectric constant by using remote plasma enhanced chemical vapor deposition from hexamethyldisiloxane. Thin Solid films, 343-344, 457460.Google Scholar
He, H., Duchet, J., Galy, J. & Gerard, J.-F. (2005) Grafting of swelling clay materials with 3-aminopropyl-triethoxysilane. Journal of Colloid and Interface Science, 288, 171176.CrossRefGoogle Scholar
Jin, Y.-H., Park, H.-J., Im, S.-S., Kwak, S.-Y. & Kwak, S. (2002) Polyethylene/clay nanocomposite by in-situ exfoliation of montmorillonite during Ziegler-Natta polymerization of ethylene. Macromolecular Rapid Communications, 23, 135140.Google Scholar
Jovanovic, J.D., Govedarica, M.N., Dvornic, P.R. & Popovic, I.G. (1998) The thermogravimetric analysis of some polysiloxanes. Polymer Degradation and Stability, 61, 8793.CrossRefGoogle Scholar
Ke, Y.C. & Stroeve, P. (2005) Modification and dispersion of silicate and silica. Pp. 6984 in: Polymer-Layered Silicate and Silica Nanocomposites. Elsevier, Amsterdam.Google Scholar
Kricheldorf, H.R. (1996) Polysiloxanes and polymers containing siloxane groups. Pp. 113117 in: Silicon in Polymer Synthesis. Springer-Verlag, Berlin.Google Scholar
Lee, J.-H., Jung, D., Hong, C.-E., Rhee, K.Y. & Advani, S.G. (2005) Properties of polyethylene-layered silicate nanocomposites prepared by melt intercalation with a PP-g-MA compatibilizer. Composites Science and Technology, 65, 19962002.CrossRefGoogle Scholar
Lotti, C., Isaac, C.S., Branciforti, M.C., Alves, R.M.V., Liberman, S. & Bretas, R.E.S. (2008) Rheological, mechanical and transport properties of blown films of high density polyethylene nanocomposites. European Polymer Journal, 44, 13461357.Google Scholar
Lv, S., Zhou, W., Li, S. & Shi, W. (2008) A novel method for preparation of exfoliated UV-curable polymer/ clay nanocomposites. European Polymer Journal, 44, 16131619.Google Scholar
Lyatskaya, Y. & Balazs, A.C. (1998) Modeling the phase behavior of polymer-clay composites. Macromolecules, 31, 66766680.CrossRefGoogle Scholar
Monasterio, F.E., Pita, V.J.R.R., Dias, M.L., Erdmann, E. & Destefanis, H.A. (2010) Thermal and rheological properties of high density polyethylene composites based on poly(diphenyl-siloxanes)/organoclay hybrids obtained from two different silanes. Submitted to Macromolecular Symposia. Google Scholar
Negrete-Herrera, N., Putaux, J.-L. & Bourgeat-Lami, E. (2006) Synthesis of polymer/Laponite nanocomposite latex particles via emulsion polymerization using silylated and cation-exchanged Laponite clay platelets. Progress in Solid State Chemistry, 34, 121137.Google Scholar
Park, K.-W. & Kwon, O.-Y. (2004) Interlamellar silylation of montmorillonite with 3-aminopropyl-triethoxysilane. Bulletin of the Korean Chemical Society, 25, 965968.Google Scholar
Picard, E., Gauthier, H., Gérard, J.-F. & Espuche, E. (2007) Influence of the intercalated cations on the surface energy of montmorillonites: consequences for the morphology and gas barrier properties of polyethylene/montmorillonites nanocomposites. Journal of Colloid and Interface Science, 307, 364376.Google Scholar
Saminathan, K., Selvakumar, P. & Bhatnagar, N. (2008) Fracture studies of polypropylene/nanoclay composite. Part I: Effect of loading rates on essential work of fracture. Polymer Testing, 27, 296307.Google Scholar
Shanmugharaj, A.M., Rhee, K.Y. & Ryu, S.H. (2006) Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials. Journal of Colloid and Interface Science, 298, 854859.CrossRefGoogle ScholarPubMed
Shen, W., He, H., Zhu, J., Yuan, P. & Frost, R.L. (2007) Grafting of montmorillonite with different functional silanes via two different reaction systems. Journal of Colloid and Interface Science, 313, 268273.CrossRefGoogle ScholarPubMed
Silverstein, R.M. & Webster, F.X. (2004) Spectrometric Identification of Organic Compounds, 6th edition. John Wiley and Sons, New York, 71 pp.Google Scholar
Sinha Ray, S. & Okamoto, M. (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28, 15391641.Google Scholar
Smith, D.R., Matthew, M.W., Ratkowski, A.J., Grieder, W.F., Adler-Golden, S.M. & Richards, E.N. (1991) Spirit I, final flight report. Environmental Research Papers, 1094. Google Scholar
Song, L., Hu, Y., Wang, S., Chen, Z. & Fan, W. (2002) Study on the solvothermal preparation of polyethylene/ organophilic montmorillonite nanocomposites. Journal of Materials Chemistry, 12, 31523155.Google Scholar
Theng, B.K.G. (1974) Pp. 913 in: The Chemistry of Clay-Organic Reactions. John Wiley & Sons, New York.Google Scholar
Tiwari, A., Nema, A.K., Das, C.K. & Nema, S.K. (2004) Thermal analysis of polysiloxanes, aromatic polyimide and their blends. Thermochimica Ada, 417, 133142.CrossRefGoogle Scholar
Tjong, S.C. (2006) Structural and mechanical properties of polymer nanocomposites. Materials Science and Engineering, 53, 73197.Google Scholar
Vaia, R.A. & Giannelis, E.P. (1997a) Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules, 30, 79907999.CrossRefGoogle Scholar
Vaia, R.A. & Giannelis, E.P. (1997b) Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment. Macromolecules, 30, 80008009.Google Scholar
Vaia, R.A., Teukolsly, R. & Giannelis, E. (1994) Interlayer structure and molecular environment of alkylammonium layered silicates. Chemistry of Materials, 6, 10171022.Google Scholar
Yeh, J.-M., Huang, H.-Y., Chen, C.-L., Su, W.-F. & Yu, Y.-H. (2006) Siloxane-modified epoxy resin—clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach. Surface and Coatings Technology, 200, 27532763.CrossRefGoogle Scholar
Yu, Y.-H., Lin, C.-Y., Yeh, J.-M. & Lin, W.-H. (2003) Preparation and properties of poly(vinyl alcoholclay nanocomposite materials. Polymer, 44, 35533560.CrossRefGoogle Scholar
Yürüdü, C., Işçi, S., Ünlü, C., Atici, O., Ece, Ö.I. & Giingor, N. (2005) Synthesis and characterization of HDA/NaMMT organoclay. Bulletin of Materials Science, 28, 623628.Google Scholar
Zulfiqar, S. & Ahmad, S., (1999) Thermal degradation of blends of PVC with polysiloxane-1. Polymer Degradation and Stability, 65, 243247.Google Scholar