Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T07:51:44.498Z Has data issue: false hasContentIssue false

The Effects of Lithology, Bulk Chemistry and Modal Composition on Illite "Crystallinity"-A Case Study from the Bakony Mts., Hungary

Published online by Cambridge University Press:  09 July 2018

P. Árkai
Affiliation:
Laboratory for Geochemical Research, Hungarian Academy of Sciences, H-1112 Budapest, Budaörsi út 45, Hungary
GY. Lelkes-Felvári
Affiliation:
Hungarian Geological Institute, H-1442 Budapest, Stefánia u. 14. P.O.B. 106, Hungarynd

Abstract

Modal and bulk chemical compositions, illite and chlorite "crystallinity" indices (IC and ChC), white mica bo and vitrinite reflectance values of a Palaeozoic variegated clastic sequence have been determined. The strongly varying IC values are inadequate for the determination of metamorphic zones. Based on statistical analyses of the factors which might affect IC, the presence of paragonite, even in very small quantities as a discrete phase and/or as mixed-layers with illitemuscovite, proved to be the decisive factor. In contrast, no significant correlations were found between the modal composition of the main phases, bulk chemical composition (including Fe3+/Fe2+ ratio) and IC, ChC, or white mica bo values. Thus, neither lithofacies (granulometric), nor redox conditions had any effect on "crystallinity" and bo parameters. Chlorite crystallinity indices and vitrinite reflectance values, together with IC values of selected samples, indicate "anchizonal" conditions. The distribution of white mica bo values indicates that this Hercynian metamorphism was of low-pressure type.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Árkai, P. (1983) Very low- and low-grade Alpine regional metamorphism of the Paleozoic and Mesozoic formations of the Biikkium, NE-Hungary. Acta Geol. Hung. 26, 83101.Google Scholar
Árkai, P. (1987) New data on the petrogenesis of metamorphic rocks along the Balaton Lineament, Transdanubia, W-Hungary. Acta Geol. Hung. 30, 319338.Google Scholar
Árkai, P. (1991) Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Palaeozoic and Mesozoic rocks of northeast Hungary. J. Met. Geol. 9, 723734.Google Scholar
Árkai, P. & Balogh Kad. (1989) The age of metamorphism of the East Alpine type basement, Little Plain, W- Hungary: K-Ar dating of white micas from very low- and low-grade metamorphic rocks. Acta Geol. Hung. 32, 131147.Google Scholar
Árkai, P. & Dunkl, I. (1989) Report on the researches carried out in the theme Petrogenetic reconstruction of low-temperature metamorphic rocks. Research report, Lab. for Geochem. Research, Budapest (in Hungarian).Google Scholar
Árkai, P. & Lelkes-FelvAri Gy. (1987) Very low-and low-grade metamorphic terrains in Hungary. Pp. 51-68 in: Pre-Variscan Events in the Alpine-Mediterranean Mountain Belts (H.W. Fliigel, F.P. Sassi & P. Grecula, editors). Mineralia Slovaca-Monography, Alfa, Bratislava, Czechoslovakia.Google Scholar
Árkai, P., HorvAth Z.A. & T6th M.N. (1987) Regional metamorphism of the East Alpine type Paleozoic basement, Little Plain, W-Hungary: mineral assemblages, illite crystallinity, -b0 and coal rank data. Acta Geol. Hung. 30, 153175.Google Scholar
Árkai, P., Sassi, R. & Zirpoli, G. (1991) On the boundary between the low- and very low-grade South-Alpine basement in Pustertal: X-ray characterization of white mica in metapelites between Dobbiaco (Toblach, Italy) and Leiten (Austria) (Eastern Alps). Memorie di Scienze Geologiche, Padova 43, 293304.Google Scholar
Balogh, Kad., Árva-Sós, E. & Pecskay, Z. (1990) Age-determinations of uplift and recrystallization based on K-Ar isotopic investigation of clay minerals from rock samples of the Transdanubian and the North-Hungarian Midmountains. Research report, Nuclear Research Institute, Debrecen (in Hungarian).Google Scholar
Bárdossy, Gy. (1966) X-ray diffractometric investigation of mineral composition of bauxite. Kohdszati Lapok 8, 355363.(in Hungarian).Google Scholar
Bence, A.E. & Albee, A. (1968) Empirical correction factors for electron microanalysis of silicates and oxides. J. Geol. 76, 382403.Google Scholar
Frey, M. (1969) A mixed-layer paragonite/phengite of low-grade metamorphic origin. Contrib. Mineral. Petrol. 24, 6365.Google Scholar
Frey, M. (1987) Very low-grade metamorphism of clastic sedimentary rocks. Pp. 9-58 in: Low Temperature Metamorphism (M. Frey, editor). Blackie, Glasgow & London, UK.Google Scholar
Frey, M. & Niggli, E. (1972) Margarite, an important rock-forming mineral in regionally metamorphosed low-grade rocks. Die Naturwissenschaften 59, 214215.Google Scholar
Frey, M., Bucher, K., Frank, E. & Schwander, H. (1982) Margarite in the Central Alps. Schweiz. Mineral. Petrogr. Mitt. 62, 2145.Google Scholar
Guidotti, C.V. (1984) Micas in metamorphic rocks. Pp. 357-467 in: Micas (S.W. Bailey, editor). Reviews in Mienralogy Vol. 13. Mineralogical Society of America, Washington DC, USA.Google Scholar
Guidotti, C.V. & Sassi, F.P. (1976) Muscovite as a petrogenetic indicator mineral in pelitic schists. N. Jb. Miner. Abh. 127, 97142.Google Scholar
Guidotti, C.V. & Sassi, F.P. (1986) Classification and correlation of metamorphic facies series by means of muscovite b0 data from low-grade metapelites. N. Jb. Miner. Abh. 153, 363380.Google Scholar
Jacobson, C.E. (1989) Estimation of Fe3+ from electron microprobe analyses: observations on calcic amphibole and chlorite. J. Met. Geol. 7, 507513.Google Scholar
Kisch, H.J. (1990) Calibration of the anchizone: a critical comparison of illite “crystallinity” scales used for definition. J. Met. Geol. 8, 31—46. Google Scholar
Kisch, H.J. (1991) Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. J. Met. Geol. 9, 665670.Google Scholar
Kübler, B. (1967a) La cristallinite de l’illite et les zones tout a fait superieures du metamorphisme. Pp. 105-121 in: Étages Techniques, Colloque de Neuchātel 1966. A la Baconniere, Neuchātel, Switzerland.Google Scholar
Kübler, B. (1967b) Anchimetamorphisme et schistosite. Bull. Centre Rech Pau—S.N.P.A. 1, 259278.Google Scholar
Kübler, B. (1968) Evaluation quantitative du metamorphisme par la cristallinite de l’illite. Bull. Centre Rech. Pau— S.N.P.A. 2, 385397.Google Scholar
Kübler, B. (1975) Diagenese—Anchimetamorphisme et Metamorphisme. Inst, national delareserche scientifique— Petrole, Quebec, Canada.Google Scholar
Kübler, B. (1990) “Cristallinite” de l’illite et mixed-layers: breve revision. Schweiz. Mineral. Petrogr. Mitt. 70, 8993.Google Scholar
Kübler, B., Pittion, J.-L., Heroux, Y., Charollais, J. & Weidmann, M. (1979) Sur le pouvoir reflecteur de la vitrinite dans quelques roches du Jura, de la Molasse et des Nappes prealpines, helvetiques et penniques. Eclogae geol. Helv. 72, 343373.Google Scholar
Laird, J. & Albee, A.L. (1981) High-pressure metamorphism in mafic schist from northern Vermont. Am. J. Sci. 281, 97126.Google Scholar
Lelkes-FelvAri, Gy. (1978) Petrographische Untersuchung einiger prāpermischen Bildungen der Balaton-Linie. Geol. Hung., Ser. Geol. 18, 193295.Google Scholar
Li, G., Jiang, W.-T. & Peacor, D.R. (1992) Metastable intermediate Na-K micas in hydrothermally altered metabasites and metamorphosed pelites from Wales. Geol. Soc. Am., Annual Meeting, Cincinnati, Oct. 26-29, 1992. Abstracts with Programs,p. A72.Google Scholar
Līvi, K.T.J., Veblen, D.R. & Ferry, J.M. (1990) Segregation of K- and Na-rich micas in low-grade metamorphosed shale from the Liassic black shale, Switzerland. IGCP Probject No. 294: Very low-grade metamorphism. Conference on Phyllosilicates as Indicators of Very Low Grade Metamorphism and Diagenesis. Programme and Abstracts. Manchester, July 1990. Google Scholar
Nagy, G. (1990) Quantitative analysis by electron microprobe: Methods and applications in the Laboratory for Geochemcial Research. Izotoptechnika, diagnosztika 33, 133139. (in Hungarian).Google Scholar
Náray-Szabó, I. & Peter, T. (1967) Die quantitative Phasenanalyse in der Tonmineralforschung. Acta Geol. Acad. Sci. Hung. 11, 347356.Google Scholar
Oinuma, K., Shimoda, S. & Sudo, T. (1972) Triangular diagrams for surveying chemical compositions of chlorites. J. Tokyo Univ. Gen. Educ. (Nat. Sci.) 15, 133.Google Scholar
Padan, A., Kisch, H.J. & Shagam, R. (1982) Use of the lattice parameter b of dioctahedral illite/muscovite for the characterization of P/T gradients of incipient metamorphism. Contrib. Mineral. Petrol. 79, 8595.Google Scholar
Rischak, G. & Viczián, I. (1974) Mineralogical factors affecting the intensities of the XRD reflections of clay minerals. Foldt. Int. Évi Jel. 1972, 229256.Google Scholar
Sassi, F.P. (1972) The petrologic and geologic significance of the b0 value of potassic white micas in low-grade metamorphic rocks. An application to the Eastern Alps. Tschermaks Mineral. Petrogr. Mitt. 18, 105113.Google Scholar
Sassi, F.P. & Scolari, A. (1974) The b0 value of the potassic white micas as a barometric indicator in low-grade metamorphism of pelitic schists. Contrib. Mineral. Petrol. 45, 143152.Google Scholar
Turner, P. (1980) Continental red beds. Developments in Sedimentology, Vol. 29, Elsevier, Amsterdam, Oxford, New York.Google Scholar
Viczián, I. (1981) Mixed-layer paragonite-muscovite from anchimetamorphic rocks near Revfiilop. Foldt. Int. Evi Jel. 1979, 511513. (in Hungarian).Google Scholar
Viczián, I. (1987) Clay minerals in the sedimentary formations of Hungary.DSc thesis, Budapest (in Hungarian).Google Scholar