Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T00:05:49.986Z Has data issue: false hasContentIssue false

Hydrothermal formation of kaolinite from various metakaolins

Published online by Cambridge University Press:  09 July 2018

C. - I . Fialips
Affiliation:
Laboratoire Hydr'ASA, UMR6532-CNRS, Université de Poitiers, 40 avenue du Recteur Pineau, F-86022 Poitiers Cedex, France
S. Petit*
Affiliation:
Laboratoire Hydr'ASA, UMR6532-CNRS, Université de Poitiers, 40 avenue du Recteur Pineau, F-86022 Poitiers Cedex, France
A. Decarreau
Affiliation:
Laboratoire Hydr'ASA, UMR6532-CNRS, Université de Poitiers, 40 avenue du Recteur Pineau, F-86022 Poitiers Cedex, France

Abstract

Metakaolins formed by total dehydroxylation of kaolinite, dickite and nacrite were hydrothermally treated at 240°C, for 2, 21 or 182 days, at initial pH = 5– 6 or 1. Kaolinite was the only mineral of the kaolin subgroup crystallized in these treatments. Kaolinite is less ordered for pH = 4– 6 than for pH = 1. This can be attributed to the influence of specific chemical, morphological, and/or crystalline properties of the metakaolins. Two different processes of kaolinite formation and crystal growth must be involved depending on the pH and metakaolin. The first process implies the dissolution of the metakaolin and crystallization of thin prismatic or dendritic kaolinite particles which curl, probably due to surface tension. The second process implies the rapid formation of small pseudohexagonal kaolinite particles which would aggregate and coalesce to form bigger particles.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. (1980) Summary of recommendations of AIPEA nomenclature committee. Clay Miner. 15, 85 – 93.Google Scholar
Brindley, G.W. & Brown, G. (editors) (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Monograph 5, Mineralogical Society, London.Google Scholar
Brindley, G.W. & Nakahira, M. (1959) The kaolinitemullite reaction series: II, Metakaolin. J. Am. Ceram. Soc. 42, 314 – 318.CrossRefGoogle Scholar
Brindley, G.W. & Porter, A.R.D. (1978) Occurrence of dickite in Jamaica – Ordered and disordered varieties. Am. Miner. 63, 554 – 562.Google Scholar
Brindley, G.W., Chih-Chun Kao, Harrisson, J.L., Lipsicas, M. & Raythatha, R. (1986) Relation between structural disorder and other characteristics of kaolinites and dickites. Clays Clay Miner. 34, 239 – 249.CrossRefGoogle Scholar
Cases, J.M., Liétard, O., Yvon, J. & Delon, J.F. (1982) Etude des propriétés cristallochimiques, morphologiques et superficielles de kaolinites désordonnées. Bull. Minéral. 105, 439 – 457.CrossRefGoogle Scholar
Churchman, G.J., Whitton, J.S., Claridge, G.G.C. & Theng, B.K.G. (1984) Intercalation method using formamide differentiating halloysite from kaolinite. Clays Clay Miner. 32, 241 – 248.Google Scholar
Decarreau, A. (1980) Cristallogenèse expérimentale des smectites magnésiennes: hectorite, stévensite. Bull. Minéral. 103, 579 – 590.Google Scholar
De Ligny, D. & Navrotsky, A. (1999) Energetics of kaolin polymorphs. Am. Miner. 84, 506 – 516.Google Scholar
Eberl, D.D. & Hower, J. (1975) Kaolinite synthesis: the role of the Si/Al and (alkali)/(H+) ratio in hydrothermal systems. Clays Clay Miner. 23, 301 – 309.Google Scholar
Ewell, R.H. & Insley, H.V. (1935) Hydrothermal synthesis of kaolinite, dickite, beidellite and nontronite. Part J. Res. Nat. Bur. Stand. 15, 173 – 186.Google Scholar
Fialips, C.I., Petit, S. & Decarreau, A. (1999) Influence du pH, du matériau de départ et de la durée de synthèse sur la cristallinité de la kaolinite. C. R. Acad. Sci., Paris, 328, 515 – 520.Google Scholar
Fialips, C.I., Petit, S., Decarreau, A. & Beaufort, D. (2000) Influence of synthesis pH on the kaolinite crystallinity and surface properties. Clays Clay Miner. 48, 173 – 184.Google Scholar
Fiore, S., Huertas, F.J., Huertas, F. & Linares, J. (1995) Morphology of kaolinite crystals synthesized under hydrothermal conditions. Clays Clay Miner. 43, 353 – 360.Google Scholar
Guggenheim, S., Alietti, A., Bain, D.C., Drits, V.A., Formoso, M.L.L., Galán, E., Hudnall, W., Köster, H.M., Paquet, H. & Watanabe, T. (1997) Report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 1996. Clay Miner. 32, 493 – 495.Google Scholar
Guinier, A. (1956) Diffraction par les cristaux de très petite taille. Pp. 462 – 465 in: Théorie et Technique de la Radiocristallographie (Guinier, A., editor). Dunod, Paris.Google Scholar
Hill, R.D. (1955) 14 Å spacings in kaolin minerals. Acta Crystallogr. 8, 120.Google Scholar
Hinckley, D.N. (1963) Variability in crystallinity values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays Clay Miner. 11, 229 – 235.Google Scholar
Hlavay, J., Jonas, K., Elek, S. & Inczedy, J. (1977) Characterization of the particle size and the crystallinity of certain minerals by infrared spectrophotometry and other instrumental methods. I. Investigations on clay minerals. Clays Clay Miner. 25, 451 – 456.Google Scholar
Huertas, F.J., Huertas, F. & Linares, J. (1993 ) Hydrothermal synthesis of kaolinite: method and characterization of synthetic materials. Appl. Clay Sci. 7, 345 – 356.Google Scholar
Huertas, F.J., Fiore, S., Huertas, F. & Linares, J. (1999) Experimental study of the hydrothermal formation of kaolinite. Chem. Geol. 156, 171 – 190.Google Scholar
Kohyama, N., Fukushima, K. & Fukami, A. (1978) Observation of the hydrated form of tubular halloysite by an electron microscope equipped with an environmental cell. Clays Clay Miner. 26, 25 – 40.CrossRefGoogle Scholar
Liétard, O. (1977) Contribution à l’étude des proprié tés physicochimiques, cristallographiques et morphologiques des kaolins. Thèse, Univ. Nancy, France.Google Scholar
Mestdagh, M.M., Herbillon, A.J., Rodrigue, L. & Rouxhet, P.G. (1982) Evaluation du rôle du fer structural sur la cristallinité des kaolinites. Bull. Minéral. 105, 457 – 466.CrossRefGoogle Scholar
Pampuch, R. (1966) Infrared study of thermal transformations of kaolinite and the structure of metakaolin. Prace Mineral. 6, 53 – 70.Google Scholar
Plançon, A. & Tchoubar, C. (1977) Determination of structural defects in phyllosilicates by X-ray powder diffraction - II. Nature and proportion of defects in natural kaolinites. Clays Clay Miner. 25, 436 – 450.Google Scholar
Roy, R. & Brindley, G.W. (1956) A study of the hydrothermal reconstitution of the kaolin minerals. Clays Clay Miner. 4, 125 – 132.Google Scholar
Roy, R. & Osborn, E.F. (1954) The system Al2O3-SiO2- H2O. Am. Miner. 39, 853 – 885.Google Scholar
Satokawa, S., Osaki, Y., Samejima, S., Miyawaki, R., Tomura, S., Shibasaki, Y. & Sugahara, Y. (1994) Effects of the structure of silica-alumina gel on the hydrothermal synthesis of kaolinite. Clays Clay Miner. 42, 288 – 297.CrossRefGoogle Scholar
Satokawa, S., Miyawaki, R., Osaki, Y., Tomura, S. & Shibasaki, Y. (1996) Effects of acidity on the hydrothermal synthesis of kaolinite from silica-gel and gibbsite. Clays Clay Miner. 44, 417 – 423.Google Scholar
Singh, B. & Mackinnon, I.D.R. (1996) Experimental transformation of kaolinite to halloysite. Clays Clay Miner. 44, 825 – 834.Google Scholar
Stubican, V. & Roy, E. (1961) Isomorphous substitution and infrared spectra of the layer lattice silicates. Am. Miner. 46, 32 – 51.Google Scholar
Sunagawa, I. (1982) Morphology of crystals in relation to growth conditions. Estud. Geol. 38, 127 – 134.Google Scholar
Tomura, S., Shibasaki, Y., Mizuta, H. & Kitamura, M. (1983) Spherical kaolinite: synthesis and mineralogical properties. Clays Clay Miner. 31, 413 – 421.Google Scholar
Tomura, S., Shibasaki, Y., Mizuta, H. & Kitamura, M. (1985) Growth conditions and genesis of spherical and platy kaolinite. Clays Clay Miner. 33, 200 – 206.Google Scholar
Tomura, S., Shibasaki, Y., Miyawaki, R., Mizuta, H. & Yamashita, Y. (1990) Synthesis of kaolinite with dickite seed: a study by the experimental design method. Clay Sci. 7, 315 – 323.Google Scholar