Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T09:30:02.876Z Has data issue: false hasContentIssue false

Mineralogical and physico-chemical characterizations of clay from Keur Saër (Senegal)

Published online by Cambridge University Press:  09 July 2018

A. Mbaye
Affiliation:
Laboratoire de Chimie Minérale et Analytique, Faculté des Sciences et Techniques - Université Cheikh Anta Diop, Dakar, Sénégal
C. A. K. Diop*
Affiliation:
Laboratoire de Chimie Minérale et Analytique, Faculté des Sciences et Techniques - Université Cheikh Anta Diop, Dakar, Sénégal
B. Rhouta
Affiliation:
Laboratoire de Matière Condensée et Nanostructures (LMCN), Faculté des Sciences et Techniques Gueliz, BP 549, Université Cadi Ayyad Marrakech, Morocco
J. M. Brendle
Affiliation:
Equipe Matériaux à Porosité Contrôlée, Institut de Science des Matériaux de Mulhouse (IS2M) LRC CNRS 7228, Université de Haute Alsace, Institut Jean-Baptiste Donnet, 3b rue Alfred Werner, 68093 Mulhouse cedex, France
F. Senocq
Affiliation:
CIRIMAT, CNRS-UPS-INP, ENSIACET, 4 allée EmileMonso, BP44362, 31030, Toulouse, France
F. Maury
Affiliation:
CIRIMAT, CNRS-UPS-INP, ENSIACET, 4 allée EmileMonso, BP44362, 31030, Toulouse, France
D. P. Diallo
Affiliation:
Département de géologie, Faculté des Sciences et Techniques - Université Cheikh Anta Diop, Dakar, Sénégal

Abstract

There is interest in exploiting and developing natural resources, particularly deposits of natural clays. Senegal has several clay mineral deposits for which chemical and mineralogical compositions have been little studied. Some of these natural materials are nowadays used in pottery and ceramics. To extend applications, a better basic knowledge is required and, for this objective, the raw clay and separated <2 μm clay fraction from Keur Saër (Senegal) were subjected to chemical and mineralogical studies. Several techniques including X-ray diffraction (XRD), thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N2 adsorption-desorption isotherms, cation exchange capacity (CEC) measurements and solid state nuclear magnetic resonance (NMR) have been used to characterize the material. It was found that the raw clay and the separated clay fraction consist of a mineral mixture in which kaolinite is the main component. 29Si and 27Al MAS-NMR spectra show the presence of silicon atoms linked to three other silicon atoms via an oxygen atom and six coordinated Al atoms. Significant increases in the specific surface area and cation exchange capacity were observed on purification, reaching a maximum of about 73.2 m2g–1 and 9.5 meq/100 g for the separated fine clay fraction while the values for the raw material were around 28.9 m2g–1 and 7.3 meq/100 g.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. (1980) Structures of layer silicates. Pp 1–123 in: Crystal Structures of Layer Silicates and their X-Ray Identification (Brindley, G.W. & Brown, G., editors). Mineralogical Society Monograph No. 5, Mineralogical Society, London.Google Scholar
Barrusseau, J.P., Duvail, C., Noel, B.J., Nehlig, P., Roger, J. & Serrano, O. Notice explicative de la carte géologique du basin sédimentaire du Sénégal, Direction des Mine du Sénégal, 2009.Google Scholar
Bouna, L., Rhouta, B., Amjoud, M., Jada, A., Maury, F., Daoudi, F. & Senocq, L. (2010) Correlation between eletrokinetic mobility and ionic dyes adsorption of Moroccan stevensite. Applied Clay Science, 48, 527–530.CrossRefGoogle Scholar
Bouna, L., Rhouta, B., Amjoud, M., Maury, F., Lafont, M-C., Jada, A., Senocq, F. & Daoudi, L. (2011) Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers. Applied Clay Science, 52, 301–311.Google Scholar
Brigand, F. (1960) Connaissance du Sénégal, Wagoningen, the Netherlands. Fascicule Géologie Centre IFAN-Sénégal Saint Louis du Sénégal.Google Scholar
Brunauer, S., Emmet, P.H & Teller, E. (1938) Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.Google Scholar
Caillère, S., Hénin, S. & Rautureau, M. (1982) Minéralogie des Argiles: 1. Structures et Propriétés Physico-Chimiques, 2. Classification et Nomenclature. Masson Paris, 184 pp.Google Scholar
Engelhardt, G. & Michel, D. (1987) High Resolution Solid-State NMR of Silicates and Zeolites. John Wiley & Sons, New York, 485 pp.Google Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals. Monograph 4, Mineralogical Society, London, 331–363.Google Scholar
Grim, R.E. (1960) Some applications of clay mineralogy. American Mineralogist, 45, 259–260.Google Scholar
Holtzapffel, T. (1985) Les minéraux argileux: préparation, analyse diffractométrique et détermination. Société Géologique du Nord, 12, 1–135.Google Scholar
Jackson, M.L. (1975) Soil Chemical Analysis – Advanced Course, 2nd edition. Published by the author, Madison, Wisconsin, 895 pp.Google Scholar
Janes, N. & Oldfield, E. (1985) Prediction of silicon-29 nuclear magnetic resonance chemical shifts using a group electronegativity approach: applications to silicate and aluminosilicate structures. Journal of the American Chemical Society, 107, 6769–6775.Google Scholar
Lim, C.H., Jackson, M.L., Koons, R.D. & Helmke, P.A. (1980) Kaolins: sources of differences in cationexchange capacities and cesium retention. Clays and Clay Minerals, 28, 223–229.Google Scholar
Ma, C. & Eggleton, R.A. (1999) Cation exchange capacity of kaolinite. Clays and Clay Minerals, 47, 174–180.Google Scholar
Mantin, I. & Glaeser, R. (1960) Fixation des ions cobalt hexamine par les montmorillonites acides. Bulletin du Groupe Français des Argiles, 50, 83–88.Google Scholar
Marcos, F. & Rosa, B.D. (1995) The use of clays for the hydrotreatment of heavy crude oils. Catalysis Reviews, 37, 1–100.Google Scholar
Meunier, S. (1898) Contribution à la géologie du Bas-Sénégal. Comptes Rendus Académie des Sciences, 126, 666–669.Google Scholar
Meunier, S. (1904) Contribution a la connaissance des formations lutétiennes au Sénégal. Comptes Rendus Académie des Sciences, 138, 62–63.Google Scholar
Moussi, B., Medhioub, M., Hatira, N., Yans, J., Hajjaji, W., Rocha, F., Labrincha, J.A. & Jamoussi, F. (2011) Identification and use of white clay deposits from the area of Tamra (northern Tunisia) as ceramic raw materials. Clay Minerals, 46, 165–175.CrossRefGoogle Scholar
Ormsby, W.C., Shartsis, J.M. & Woodside, K.H. (1962) Exchange behavior of kaolins of varying degrees of crystallinity. Journal of the American Ceramic Society. 45 361–365.Google Scholar
Petit, S. & Decarreau, A. (1990) Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites. Clay Minerals, 25, 181–196.Google Scholar
Petit, S., Decarreau, A. Mosser, C., Ehret, G. & Grauby, O. (1995) Hydrothermal synthesis (250°C) of coppersubstituted kaolinites. Clay Minerals, 43, 482–494.Google Scholar
Pialy, P., Nkoumbou, C., Villiéras, F., Razafitianamaharavo, A., Barres, O., Pelletier, M., Ollivier, G., Bihannic, I., Njopwouo, D., Yvon, J. & Bonnet, J.P. (2008) Characterization for industrial applications of clays from Lembo deposit, Mount Bana (Cameroon). Clay Minerals, 43, 415–435.Google Scholar
Plee, D., Borg, F., Gatineau, L. & Fripiat, J.J. (1985) Highresolution solid-state 27Al and 19Si nuclear magnetic resonance study of pillared clays. Journal of the American Chemical Society, 107, 2362–2369.CrossRefGoogle Scholar
Rebelo, M., Rocha, F. & Ferreira da Silva, E. (2010) Mineralogical and physicochemical characterization of selected Portuguese Mesozoic-Cenozoic muddy/ clay raw materials to be potentially used as healing clays. Clay Minerals, 45, 229–240.Google Scholar
Rhouta, B., Kaddami, H., Elbarqy, J., Amjoud, M’B., Daoudi, L., Maury, F., Senocq, F., Maazouz, A. & Gerard, J.-F. (2008) Elucidation of the structure of the Jbel Rhassoul stevensite (Morocco) by advanced physico-chemical study. Clay Minerals, 43, 393–404.CrossRefGoogle Scholar
Ribeiro, M.J., Albuquerque, C.M. & Labrincha, J.A. (2008) Removal of Pb2+ and Ni2+ ions from aqueous media by filtration through clay-based beds. Clay Minerals, 43, 647–656.Google Scholar
Ritz, M. & Bellion, Y. (1988) Geologic section across the onshore Senegal–Mauritania Basin derived from geoelectric studies. Canadian Journal of Earth Sciences, 26, 65–73.Google Scholar
Rochaicas, J. & Klinowski, J. (1990) 29Si and 27Al magicangle-spinning NMR studies of the thermal transformation of kaolinite. Physics and Chemistry of Minerals, 17, 179–186.Google Scholar
Roques, M. & Nickles, M. (1946) Sur la situation stratigraphique des quartzites de Bakel (Senegal). Comptes Rendus Académie des Sciences, 222, 1452–1454.Google Scholar
Saikia, N.J., Bharali, D.J., Sengupta, P., Bordoloi, D., Goswamee, R.L., Saskia, P.C. & Borthakur, P.C. (2003) Characterization, beneficiation and utilization of a kaolinite clay from Assam, India. Applied Clay Science, 24, 93–103.CrossRefGoogle Scholar
Sanz, J. & Sarrotaso, J.M. (1984) 29Si and 27Al highresolution MAS-NMR spectra of phyllosicates. Journal of the American Chemical Society, 106, 4790–4793.Google Scholar
Sayin, A.S. (2007) Origin of kaolin deposits: Evidence from the Hisarcik (Emet-Kutahya) deposits, Western Turkey. Turkish Journal of Earth Sciences, 16, 7796.Google Scholar
Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R., Rouquerol, J. & Siemienwska, T. (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity Pure and Applied Chemistry, 57 603–619.Google Scholar
Suarez, B.M., Flotes, G.L.V., Vicente, R.M.A & Martin, P.J.M. (1995) Acid activation of palygorskite with HCL development of physico-chemical, textural and surface properties. Applied Clay Science, 10, 247–258.Google Scholar
Tamer, A. E. & Christian, D. (2008) Intercalation of cyclic imides in kaolinite, Journal of Colloid and Interface Science, 323, 338–348.Google Scholar
Tessier, F. (1946) Sur l’existence d’un niveau maes-trichtien au Sénégal. Comptes Rendus Académie des Sciences, 222, 505–506.Google Scholar
Tessier, F. (1949) Le Paléocène au Sénégal. Comptes Rendus Sociétés Géologiques de France. 11, 227–229.Google Scholar
Van der Marel, H.W. & Beutelspacher, S. (1976) Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures. Elsevier, Amsterdam, 397 pp.Google Scholar
Vizcayno, C., Gutiérrez, R. M., Castello, R., Rodriguez, E. & Guerrero, C.E. (2010) Pozzolan obtained by mechanochemical and thermal treatments of kaolin. Applied Clay Science, 49, 405–413.Google Scholar
Wei, S., Tan, W., Zhao, W. Fan Liu, Y.T.Y. & Koopal, L.K. (2012) Microstructure, interaction mechanisms and stability of binary systems containing goethite and kaolinite. Soil Science Society of America Journal, 76, 389–398.Google Scholar
Wilson, M.J. (1994) Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Chapman and Hall, 18–21.Google Scholar
Wyszomirski, P. & Galos, K. (2009) Polish clay raw materials for the production of ceramic tiles. Clay Minerals, 44, 497–509.Google Scholar
Zheng, S.Q., Han, Y., Huang, X.H., Dai, Y.L., Qian, D., Zhang, J.C. & Ren, S. (2010) Acid and aluminum modification of sepiolite and its application in FCC catalysis. Clay Minerals, 45, 15–22.Google Scholar