Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T13:55:11.421Z Has data issue: false hasContentIssue false

Occurrence of tosudite in the Guezouman, Tarat and Tchirezrine 2 formations, hosts of uranium deposits in Niger (Tim Mersoï basin)

Published online by Cambridge University Press:  02 January 2018

Sophie Billon*
Affiliation:
Société ERM, rue Michel Brunet, Bat. 35, 86000 Poitiers, France Université de Poitiers, UMR 7285 CNRS, IC2MP, rue Michel Brunet, Bat. 35, 86073 Poitiers cedex 9, France
Patricia Patrier
Affiliation:
Université de Poitiers, UMR 7285 CNRS, IC2MP, rue Michel Brunet, Bat. 35, 86073 Poitiers cedex 9, France
Daniel Beaufort
Affiliation:
Université de Poitiers, UMR 7285 CNRS, IC2MP, rue Michel Brunet, Bat. 35, 86073 Poitiers cedex 9, France
Paul Sardini
Affiliation:
Université de Poitiers, UMR 7285 CNRS, IC2MP, rue Michel Brunet, Bat. 35, 86073 Poitiers cedex 9, France
Aurélia Wattinne-Morice
Affiliation:
AREVA, 1 place Jean Millier, 92084 Paris la Défense, France

Abstract

Tosudite, a regularly interstratified chlorite-smectite, crystallizes as an alteration mineral of several preexisting Al-bearing silicates (feldspars, kaolin minerals, chlorites) present in arkosic sandstones hosted in uranium deposits in Niger. X-ray diffraction patterns show a sharp superstructure at 29–29.6 Å for an air-dried state and a peak at 30.8–31.6 Å following ethylene glycol solvation. The 060 reflection at 1.507–1.509 Å indicates an overall dioctahedral character, and the very low coefficient of variation of the d00l reflections for the solvated mineral (0.03–0.13) permits validation of the regular interstratification justifying its identification as tosudite. Microprobe analysis allowed specification of the component layers of this mixed-layer mineral. The chlorite is a di-trioctahedral type analogous to sudoite (Si3Al4Mg2(OH)8), and the smectite component is a low-charge montmorillonite type Tosudite is characterized by large Al2O3 and MgO contents and small Fe content; its composition corresponds approximately to the formula where octahedral occupancy is ∼7. Scanning electron microscope (SEM) observations show that tosudite is closely associated with some uranium minerals: tosudite crystallization occurred during a late alteration event which post-dates burial diagenesis and during which uranium was remobilized by Mg-rich oxidizing fluids.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was originally presented during the session ‘The many faces of chlorite’, part of the Euroclay 2015 conference held in July 2015 in Edinburgh, UK.

References

Bailey, S.W. (1982) Nomenclature for regular interstrati-fications. American Mineralogist, 67, 394398.Google Scholar
Bartier, D., Ledesert, B., Clauer, N., Meunier, A., Liewig, N., Morvan, G. & Addad, A. (2008) Hydrothermal alteration of the Soultz-sous-Forets granite (Hot Fractured Rock geothermal exchanger) into a tosudite and illite assemblage. European Journal of Mineralogy, 20, 131142.Google Scholar
Beaufort, D., Meunier, A., Patrier, P. & Ottaviani, M.M. (1992) Significance of the chemical variations in assemblages including epidote and/or chlorite in the fossil geothermal field of Saint Martin (Lesser Antilles). Journal of Volcanology and Geothermal Research, 51, 95114.Google Scholar
Beaufort, D., Baronnet, A., Lanson, B. & Meunier, A. (1997) Corrensite: a single phase or a mixed-layer phyllosilicate in the saponite-to-chlorite conversion series? A case study of Sancerre-Couy deep drill hole (France). American Mineralogist, 82, 109124.Google Scholar
Beaufort, D., Cassagnabere, A., Petit, S., Lanson, B., Berger, G., Lacharpagne, J.C. & Johansen, H. (1998) Kaolinite-to-dickite reaction in sandstone reservoirs. Clay Minerals, 33, 297316.Google Scholar
Beaufort, D., Rigault, C., Billon, S., Billault, V., Inoue, A., Inoue, S. & Patrier, P. (2015) Chlorite and chloritization processes through mixed-layer mineral series in low-temperature geological systems — A review. Clay Minerals, 50, 497523.Google Scholar
Billault, V., Beaufort, D., Patrier, P. & Petit, S. (2002) Crystal chemistry of Fe-sudoites from uranium deposits in the Athabasca basin (Saskatchewan, Canada). Clays and Clay Minerals, 50, 7081.Google Scholar
Billon, S. (2014) Minéraux argileux dans le gisement uranifere d'Imouraren (Bassin de Tim Mersoï, Niger): Implications sur la genese du gisement et sur l'optimisation desprocessus de traitement du minerai. Phd thesis, University of Poitiers, France, 340 pp.Google Scholar
Billon, S., Beaufort, D. & Sardini, P. (2009) Processus D ‘altération Dans Les Corps Gréseux (Izégouande, Tarat et Guézouman) Au Voisinage De La Faille DArlit (Niger). Unpublished Masters thesis, University of Poitiers, France, 38 pp.Google Scholar
Billon, S., Beaufort, D., Sardini, P. & Wattinne, A. (2013) Occurrence of Tosudite in Uranium deposits of the Arlit area (Niger). XV International Clay Conference, 7-11 July 2013, Rio de Janeiro, Brazil.Google Scholar
Bish, D.L. & Reynolds, R.C. Jr (1989) Sample preparation for X-ray diffraction. Pp. 7399 in: Modern Powder Diffraction (D.L. Bish & J.E. Post, editors). Reviews in Mineralogy, 20, Mineralogical Society of America, Washingon, D.C. Google Scholar
Brown, G., Bourguignon, P. & Thorez, J. (1974) A lithium-bearing aluminian regular mixed layer montmorillon-ite-chlorite from Huy, Belgium. Clay Minerals, 10, 135144.Google Scholar
Cavellec, S. (2006) Evolution diagénétique du bassin de Tim Mersoï et conséquences pour la genese des minéralisations uraniferes dans les formations carbo-niferes du Guézouman et du Tarat (district Arlit-Akokan, Niger). Unpublished PhD thesis, University Paris-Sud XI, France, 428 pp.Google Scholar
Creach, M., Meunier, A. & Beaufort, D. (1986) Tosudite crystallization in the kaolinitized granitic cupola of Montebras, Creuse, France. Clay Minerals, 21, 225230.Google Scholar
Coquel, R., Lang, J. & Yahaya, M. (1995) Palynologie du Carbonifere du Nord Niger et de la plateforme saharienne: implications stratigraphiques et paléogéographiques. Review of Palaeobotany and Palynology, 89, 319334.Google Scholar
Daniels, E.J. & Altaner, S.P. (1990) Clay mineral authigen-esis in coal and shale from the Anthracite region, Pennsylvania. American Mineralogist, 75, 825839.Google Scholar
Forbes, P. (1989) Rôle des structures sédimentaires et tectoniques, du volcanisme alcalin régional et des fluides diagénétiques — hydrothermaux pour la formation des minéralisations à U-Zr-Zn-V-Mo d'Akouta (Niger). Unpublished PhD thesis, University of Bourgogne, France, 375 pp.Google Scholar
Frank-Kamenetskii, V.A., Logvinenko, N.V. & Drits, V.A. (1965) Tosudite - a new mineral, forming the mixed layer phase in alushtite. Proceedings of the International Clay Conference, Stockholm, 2, 181186.Google Scholar
Garvie, L.A.J. (1992) Diagenetic tosudite from the lowermost St Maugham's Group, Lydney Harbour, Forest of Dean, UK. Clay Minerals, 27, 503513.Google Scholar
Gerbeaud, O. (2006) Evolution structurale du bassin de Tim Mersoï: le rôle des déformations de la couverture sédimentaire sur la mise en place des gisements uraniferes du secteur d'Arlit (Niger). PhD thesis, University of Paris Sud, 260 pp.Google Scholar
Harrison, M.J., Marshak, S. & Onasch, M. (2004) Stratigraphic control of hot fluids on anthracitization, Lackawanna synclinorium, Pennsylvania. Tectonophysics, 378, 85103.CrossRefGoogle Scholar
Hillier, S. (1994) Pore-lining chlorites in siliciclastic reservoir sandstones: electron microprobe, SEM and XRD data, and implications for their origin. Clay Minerals, 29, 665679.Google Scholar
Hillier, S., Fallick, A.E. & Matter, A. (1996) Origin of pore-lining chlorite in the Aeolian Rotliegend of northern Germany. Clay Minerals, 31, 153171.Google Scholar
Hillier, S., Wilson, M.J. & Merriman, R.J. (2006) Clay mineralogy of the Old Red Sandstone and Devonian sedimentary rocks of Wales, Scotland and England. Clay Minerals, 41, 43371.Google Scholar
Kulke, H. (1969) Petrographie und diagenese de Stubensandsteins (mittlerer Keuper) aus Tiefbohrungen im Raum. Memmingen (Bayern). Contributions to Mineralogy and Petrology, 20, 135163.Google Scholar
Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabere, A. & Meunier, A. (2002) Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay Minerals, 37, 122.Google Scholar
Merceron, T., Inoue, A., Bouchet, A. & Meunier, A. (1988) Lithium-bearing donbassite and tosudite from Echassieres, Massif Central, France. Clays and Clay Minerals, 36, 3946.Google Scholar
Morrison, S.J. & Parry, W.T. (1986) Dioctahedral corrensite from Permian red beds, Libson valley, Utah. Clays and Clay Minerals, 34, 613624.Google Scholar
Nelson, D.O. & Guggenheim, S. (1993) Inferred limita-tions to the oxidation of Fe in chlorite: a high-temperature single-crystal X-ray study. American Mineralogist, 78, 11971207.Google Scholar
Nishiyama, T., Shimoda, S., Shimosaka, K. & Kanaoka, S. (1975) Lithium-bearing tosudite. Clays and Clay Minerals, 23, 337342.Google Scholar
Pablo-Galan, L. & Chavez-Garcia, M.L. (1994) Dioctahedral tosudite in hydrothermally altered Pliocene rhyolitic tuff, Neutla, Mexico. Clays and Clay Minerals, 42, 114122.Google Scholar
Pacquet, A. (1968) Analcimes et argiles diagénétiques dans les formations sédimentaires de la région d'Agades (République du Niger). Mémoire Service Carte Géologique Alsace-Lorraine, France, 27—221.Google Scholar
Pacquet, A. (1969) Analcimes et argiles diagénétiques dans les formations sédimentaires de la région d'Agades (République du Niger). PhD thesis, University of Strasbourg, France, 258 pp.Google Scholar
Pagel, M., Cavellec, S., Forbes, P., Gerbaud, O., Vergely, P., Wagani, I. & Mathieu, R. (2005) Uranium deposits in the Arlit area. Pp. 303305 in: Mineral Deposit Research: Meeting the Global Challenges, Vols 1 and 2 (J. Mao and F. P. Bierlein, editors). Springer-Verlag, Berlin.Google Scholar
Patrier, P., Billon, S. & Beaufort, D. (2009) Distribution Spatiale Des Chlorites Magnésiennes etDes Chlorites Ferriferes Rencontrées Autour De La Faille d Arlit. Unpublished technical report, University of Poitiers, France, 48 pp.Google Scholar
Riegler, T., Beaufort, D., Wollenberg, P. & Lescuyer, J.L. (2014) New insight from alteration related to uranium deposits in the Kiggavik-Andrew Lake trend, Nunavut, Canada. The Canadian Mineralogist, 52, 275.Google Scholar
Rigault, C. (2010) Cristallochimie dufer dans les chlorites de basse température: implications pour la géothermométrie et la détermination des paléoconditions rédox dans les gisements d ‘uranium. Unpublished PhD thesis, University of Poitiers, France, 259 pp.Google Scholar
Sempéré, T. (1981) Le contexte sédimentaire du gisement d'uranium dArlit (République du Niger). PhD thesis, Ecole nationale supérieure des mines de Paris, 392 pp.Google Scholar
Shimoda, S. (1969) New data for tosudite. Clays and Clay Minerals, 17, 179184.Google Scholar
Sudo, T. & Kodama, H. (1957) An aluminian mixed-layer mineral of montmorillonite-chlorite. Zeitschrift für Kristallographie, 109, 379387.Google Scholar
Valsardieu, C. (1971) Etude géologique et paléogéographique du bassin de Tim Mersoï, région d'Agades (République du Niger). PhD thesis, University of Nice, France, 518 pp.Google Scholar
Velde, B. (1985) Clay Minerals: A Physical-Chemical Explanation of their Occurrence. Elsevier, Amsterdam, 427 pp.Google Scholar
Wilson, M.J. (1971) Clay mineralogy of the Old Red Sandstone (Devonian) of Scotland. Journal of Sedimentary Petrology, 41, 9951007.Google Scholar