Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T00:34:51.316Z Has data issue: false hasContentIssue false

Oxidative decarboxylation of isocitric acid in the presence of montmorillonite

Published online by Cambridge University Press:  09 July 2018

A. Naidja
Affiliation:
Centre de Recherches sur la Physico-Chimie des Surfaces Solides, CNRS, 24 Avenue du President Kennedy, 68200 Mulhouse, France
B. Siffert
Affiliation:
Centre de Recherches sur la Physico-Chimie des Surfaces Solides, CNRS, 24 Avenue du President Kennedy, 68200 Mulhouse, France

Abstract

Isocitric acid oxidative decarboxylation was realized in the absence and in the presence of homoionic Na+-, Mn2+-, and Cu2+-montmorillonite. The catalytic activity of the clay depends upon the nature of the interlayer exchangeable cation. Isocitric acid is transformed into α-ketoglutaric acid under the action of the clay mineral saturated with Na+ cations which do not form a complex with the isocitrate anion. Nevertheless, the reaction rate is very much lower than in the presence of the enzymatic system (isocitrate dehydrogenase enzyme and nicotinamide adenine dinucleotide phosphate coenzyme). The reaction mechanism in the presence of clay is given showing the different steps of the transformation.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellamy, L.J. (1975) Carboxylic acid. Pp. 183-200 in: The Infra-Red Spectra of Complex Molecules., 1, 3rd edition, Chapman & Hall, London.Google Scholar
Blanchard-Desce, M., Fosset, B., Guyot, F., Julien, L. & Placin, S. (1987) Chimie Organique Experimentale,pp. 206-208. Herman, Paris.Google Scholar
Boyd, S.A. & Mortland, M.M. (1985) Manipulating the activity of immobilized enzymes with different organo-smectite complexes. Experientia, 12, 1564–1566.Google Scholar
Boyd, S.A. & Mortland, M.M. (1986) Selective effects of smectite-organic complexes on the activities of immobilized enzymes. J. Mol. Cat., 34, 1–8.Google Scholar
Brack, A. (1976) Polymerisation en phase aqueuse d'acides amines sur les argiles. Clay Miner., 11, 117–120.CrossRefGoogle Scholar
Bzik, S., Church, F., Lawless, J., Levy, N., Mazzurco, J. & Mortland, M.M. (1983) The adsorption of biomonomers on to homoinic clays. NASA Conf. Pub., 2276, p. 53.Google Scholar
Cairns-Smith, A.G. (1974) Genes made of day. New Scientist, 64, 274–276.Google Scholar
Cairns-Smith, A.G. (1985) The first organisms. Scientific Am., 252, 74–82.Google Scholar
Cairns-Smith, A.G. & Hartman, H. (19S6) Clay Minerals and the Origin of Life, pp. 130137. Cambridge Univ., Cambridge.Google Scholar
Chottard, G. & Bolard, J. (1976) Etude vibrationnelle en solution de la complexation de Tacide isocitrique par quelques ions metalliques bivalents. Bull. Soc. Chim. Fr., 742745.Google Scholar
Colthup, N.B., Daly, L.H. & Wiberley, S.E. (1964) Introduction to Infrared and Raman Spectroscopy, p. 140. Academic Press, New York.Google Scholar
Coyne, L.M. (1985) A possible energetic role of mineral surfaces in chemical evolution. Origin of Life, 15, 161206.Google Scholar
De Koke, P.M.T., Donkersloot, M.C.A., Mhulendijks, G.W.M. Bastiaansen, L.A.M., Kanters, J.A. Buck, H.M. (1986) Stereoselective hybride uptake in modelsystems related to the redox NAD+/NADH. Tetrahedron. J., 42, 941–960.Google Scholar
Donkersloot, M.C.A. & Buck, H.M. (1981) The hybride-donation reaction of reduced nicotinamide-adenine- dinucleotide. I. Calculation and analogue reactions with cyclopropene tropilidine, and 1,4-dihydropyridine as hybride donors and the cyclopropenium cations as acceptor. J. Am. Chem. Soc., 103, 6549–6554.Google Scholar
Grzynowski, A.K., Tate, S.S. & Datta, S.P. (1970) Magnesium and manganese complexes of citric and isocitric acids. J. Chem. Soc A, 241245.CrossRefGoogle Scholar
Kessaissia, S., Siffert, B. & Donnet, J.B. (1980) Synthese des peptides. Preparation de Tacide hyppurique par reaction du complexe montmorillonite-glycine avec Tacide benzoxque. Clay Miner., 15, 383–392.Google Scholar
Li, N.C., Westfall, W.M., Lindenbaum, A., White, J.M. & Schubert, J. (1957) Manganese-54, uranium-233 and cobalt-60 complexes of some organic acids. J. Am. Chem. Soc., 79, 5864–5870.Google Scholar
Louisot, P. (1983) Energetique cellulaire. P. 756 in: Biochimie Generale et Medicate, Structural, Metabolique, Semeiologique. Simep ed., Paris.Google Scholar
Metzler, D. (1977) Biochemistry, The Chemical Reactions of Living Cell, Pp. 303350. Intern. Edition, London.Google Scholar
Mortland, M.M. (1984) Deamination of glutamic acid by pyridoxal phosphate-Cu-smectite catalysts. J. Mol Cat. 27, 143155.CrossRefGoogle Scholar
Naidja, A. (1988) Action catalytique des argiles de type smectites dans les reactions biochimiques. These de Doctorat, Univ. de Haute Alsace, Mulhouse.Google Scholar
Naidja, A. & Siffert, B. (1989) Glutamic acid deamination in the presence of montmorillonite. Clay Miner., 24, 649–661.Google Scholar
Paecht-Horowitz, M., Berger, J. & Katchalsky, A. (1970) The possible role of day in prebiotic synthesis. Nature, 228, 636.Google Scholar
Paecht-Horowitz, M. (1974) The possible role of clays in prebiotic peptides synthesis. Origin of Life, 5, 173–187.CrossRefGoogle Scholar
Petit-RaMel, M.M., Chottard, G. & Bollard, J. (1976) Determination potentiometrique des constantes de stabilite des complexes de l'cide (d _, 1 _) isocitrique avec le magnesium II, le manganese II et le cobalt II. J. Chim. Phys., 73, 181–185.Google Scholar
Prescott, S.G. & Dunn, C.G. (1959) Industrial Microbiology, 3rd ed. 577 pp. McGraw-Hill, New York.Google Scholar
Roberts, J.D. & Caserio, M.C. (1968) Chimie Organique Moderne, 312 pp. Ediscience, Paris.Google Scholar
Siffert, B. & Naidja, A. (1987) Decarboxylation catalytique de Tacide oxaloacetique en presence de montmorillonite. Clay Miner., 22, 435–446.CrossRefGoogle Scholar
Souchay, P. (1948) Mesures de pH en fonction de la dilution dans les solutions de sels purs. Remarques sur I'hydrolyse des carbonates. Bull. Soc. Chim. Fr., 463468.Google Scholar