Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T09:37:33.388Z Has data issue: false hasContentIssue false

Rare earth distribution and its correlation with clay mineralogy in the clay-sized fraction of Cretaceous and Pliocene sediments (central Portugal)

Published online by Cambridge University Press:  09 July 2018

M. I. Prudêncio
Affiliation:
Departamento de Quimica, ICEN, LNETI, 2685 Sacavém
M. O. Figueiredo
Affiliation:
Centro de Cristalografia e Mineralogia, IICT, Al. Afonso Henriques, 41, 4° E, 1000 Lisboa, Portugal
J. M. P. Cabral
Affiliation:
Departamento de Quimica, ICEN, LNETI, 2685 Sacavém

Abstract

The REE contents in the clay-sized fractions of nineteen Cretaceous and Pliocene continental sediments, Portugal, were found to be correlated with kaolinite. No correlation is apparent between clay mineralogy and La/Lu or Eu/Sm ratios. The Eu anomaly is generally smaller (or even absent) in the clay-sized fraction than in the corresponding whole sediment, probably due to a greater ability of the clay minerals to accommodate Eu (as Eu2+) rather than the other REE released during weathering.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cabral, J.M.P., Gouveia, M.A. & Prudêncio, M.I. (1979) Determinação de terras raras e doutros oligoelementos em rochas por activação com neutroes termicos. Bol. Mus. Lab. Min. e Geol. Faculd. de Ciencias 16, 205–218.Google Scholar
Cullers, R.L., Chaudhuri, S., Arnold, B., Lee, M. & Wolf, C.N. Jr. (1975) Rare earth distributions in clay minerals and in the clay-sized fraction of the Lower Permian and Havensville and Eskridge Shales of Kansas and Oklahoma. Geochim. Cosmochim. Acta 39, 1691–1703.Google Scholar
Fleet, A.J. (1984) Aqueous and sedimentary geochemistry of the rare earth elements. Pp. 343373 in: Rare Earth Element Geochemistry (Henderson, P., editor). Elsevier, Amsterdam.Google Scholar
Haskin, L.A., Haskin, M.A., Frey, F.A. & Wildeman, T.R. (1968) Relative and absolute terrestrial abundances of the rare earths. Pp. 899911 in: Origin and Distribution of the Elements, 1 (Ahrens, L. H., editor). Pergamon, Oxford.Google Scholar
Humphris, S.E. (1984) The mobility of the rare earth elements in the crust. Pp. 317342 in: Rare Earth Element Geochemistry (Henderson, P., editor). Elsevier, Amsterdam.Google Scholar
Prudêncio, M.I., Gouveia, M.A. & Cabral, J.M.P. (1986) Instrumental neutron activation analysis of two French geochemical references samples–Basalt BR and Biotite Mica-Fe. Geost. Newsletter X, 2931.Google Scholar
Prudêncio, M.I. (1987) Contribuição para o estudo da proveniencia das argilas utilizadas no fabrico da ceramica cinzenta fina local e regional de Conimbriga. ICEN/LNETI–Internal Report. Google Scholar
Prudêncio, M.I. & Cabral, J.M.P. (1988) Rare earths and other trace elements in Cretaceous clays from central Portugal. J. Rad. Nuc. Chem. 123, 309–320.Google Scholar
Roaldset, E. (1979) Rare earth elements in different size fractions of a marine quick clay from Ullensaker, and a till from Upper Numedal, Norway. Clay Miner. 14, 229–240.Google Scholar
Rohlf, F.J., Kishpauj, J. & Kirk, D. (1982) NTSYS User's Manual. Dept. of Ecology and Evolution, State Univ. New York, Stony Brook.Google Scholar
Ronov, A.B., Balashov, J.A. & Miodisov, A.A. (1967) Geochemistry of the rare earths in the sedimentary cycle. Geochem. Internat. 4, 1–17.Google Scholar
Sneath, P.H.A. & Sokal, R.R. (1973) Numerical Taxonomy. The Principles and Practice of Numerical Classification. W.H. Freeman & Co., San Francisco.Google Scholar