Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T23:41:37.816Z Has data issue: false hasContentIssue false

Reactions catalysed by minerals. IV. The mechanism of the benzidine blue reaction on silicate minerals

Published online by Cambridge University Press:  09 July 2018

D. H. Solomon
Affiliation:
Division of Applied Mineralogy, C.S.I.R.O., Melbourne, Australia
B. C. Loft
Affiliation:
Division of Applied Mineralogy, C.S.I.R.O., Melbourne, Australia
Jean D. Swift
Affiliation:
Division of Applied Mineralogy, C.S.I.R.O., Melbourne, Australia

Abstract

The oxidation of benzidine to benzidine-blue on silicate minerals is shown to occur at aluminium atoms exposed at crystal edges and at transition metal atoms in the higher valency state present in the silicate lattices. The transition metals in the silicate lattice undergo chemical oxidation-reduction reactions.

Changes in the colour of the benzidine-blue radical cation with the conditions of reaction are discussed in terms of the solvent used for the reaction and its influence on the pH of the mineral surface.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benesi, H.A. (1956) J. Am. chem. Soc. 78, 5490.Google Scholar
Benesi, H.A. (1957) J. phys. Chem. 61, 970.Google Scholar
Blocri, J.M., Charbonnelle, J. & Kavser, F. (1953) C.r. hebd. Séanc. Acad. Sci. Paris 237, 57.Google Scholar
Castner, T., Newell, G.S., Holton, W.C. & Slichter, C.P. (1960) J. chem. Phys. 32, 668.Google Scholar
Dodd, C.G. & Ray, S. (1960) Clays Clay Miner. 8, 237.Google Scholar
Farmer, V.C. & Russell, J.D. (1967) Clays Clay Miner. 15, 121.CrossRefGoogle Scholar
Frrpiat, J.J. (1963) Clays Clay Miner. 12, 327.Google Scholar
Groves, A.W. (1951) Silicate Analysis 2nd edn, p. 90. George Allen and Unwin, London.Google Scholar
Hauser, E.A., LE Beau, D.S. & Pevear, P.P. (1951) J. phys. colloid. Chem. 55, 68.Google Scholar
Hauser, E.A. & Leggett, M.B. (1940) J. Am. chem. Soc. 62, 1811.Google Scholar
Hirschler, A.E. (1966) J. Catalysis 5, 196.Google Scholar
Keller, W.D. (1955) Am. Miner. 40, 348.Google Scholar
Kotov, E.I. & Terenin, A.N. (1959) Proc. Acad. Sci. USSR, Phys. Chem. Sect. (English Translation), 124. 137.Google Scholar
Leach, S.J., Meschers, A. & Swanevoel, O.A. (1965) Biochemistry, Easton 4, 23.Google Scholar
Mackenzie, R.C. (1951) J. colloid. Sci. 6, 219.Google Scholar
Michaels, A.S. (1958) Ind, engng Chem. 50, 951.Google Scholar
Page|J.B. (1941) Soil Sci. 51, 133.Google Scholar
Sandell, E.B. (1959) Colorimetric Determination of Traces of Metals, p. 537. Interscience, New York.Google Scholar
Sato, H. (1965) Bull. chem. Soc. Japan 38, 1719.Google Scholar
Solomon, D.H. & Loft, B.C. (1968) J. Appl. polym. Sci. 12, 1253.Google Scholar
Solomon, D.H. & Rosser, M.J. (1965) J. Appl. polym. Sci. 9, 1261.CrossRefGoogle Scholar
Solomon, D.H. & Swift Jean, D. (1967) J. Appl. polym. Sci. 11, 2567.Google Scholar
Tahoun, S.A. & Mortland, M.M. (1966) Soil Sci. 102, 248.Google Scholar
Vogel, A.I. (1951) Practical Organic Chemistry. Longmans, London.Google Scholar
Walling, C. (1950) J. Am. chem. Soc. 72, 1164.Google Scholar
Weil-Malherbe, H. & Weiss, J. (1948) J. chem. Soc., 2164.Google Scholar
Weiss, J. (1938) Chemy Ind. 1938, 517.Google Scholar