Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T14:16:49.528Z Has data issue: false hasContentIssue false

SEM and TEM evidence of mixed-layer illite-smectite formed by dissolutioncrystallization processes in continental Paleogene sequences in northwestern Argentina

Published online by Cambridge University Press:  02 January 2018

Margarita Do Campo*
Affiliation:
INGEIS (CONICET – Universidad de Buenos Aires) y FCEyN - U.B.A. Pabellón INGEIS, Ciudad Universitaria (1428) Buenos Aires, Argentina
Blanca Bauluz
Affiliation:
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50.009 Zaragoza, Spain
Fernando Nieto
Affiliation:
Departamento de Mineralogía y Petrología and I.A.C.T., Universidad de Granada-CSIC, Avda. Fuentenueva s/n, 18002-Granada, Spain
Cecilia Del Papa
Affiliation:
CICTERRA, CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
Fernando Hongn
Affiliation:
IBIGEO (CONICET-Universidad Nacional de Salta), Avda. Bolivia 5150, 4400 Salta, Argentina

Abstract

In the northernmost Calchaquí Valley (Salta, Argentina), the Paleogene continental sediments show a transition from smectite, at the top, to R3 I-S (>90% illite) through R1 I-S (65–80% illite), in contrast to the remaining sectors, containing smectite up to the bottom. Samples at the base of the succession were characterized by high-quality step-scan X-ray diffraction (XRD), scanning electron microscopy (SEM) and analytical high-resolution transmission electron microscopy (HRTEM). Analysis by SEM demonstrated dissolution of primary phases (feldspars, micas and quartz) and crystallization of illite, I-S and kaolinite. As this alteration is not pervasive, an intermediate fluid/rock ratio could be inferred. The lattice-fringe images of the samples from upper parts of the sequence show abundant I1-rich areas, whereas in the lower parts of the sequence, illite packets and I3 I-S coexist and compositions evolve towards muscovite (tetrahedral-charge increase, principally compensated by Mgby- Al substitution in octahedral sites and by a slight decrease in Ca in interlayer sites). As burial temperatures were probably similar in all the samples, depth was not responsible for the illite formation at the bottom. The TEM textures suggest that illitization proceeded mainly by dissolution-crystallization. The active faults close to the northern Calchaquí Valley probably promoted the circulation of hot, deep fluids, favouring illitization.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abad, I., Murphy, B.J., Nieto, F. & Gutiérrez-Alonso, G. (2010) Diagenesis to metamorphism transition in an episutural basin: the late Paleozoic St. Mary's Basin, Nova Scotia, Canada. Canadian Journal of Earth Sciences, 47, 121135.Google Scholar
Abad, I., Nieto, F., Gutiérrez-Alonso, G., Murphy, B.J., Braid, J.A. & Rodríguez-Navarro, A.B. (2012) Fluid-driven low-grade metamorphism in poly deformed rocks of Avalonia (Arisaig Group, Nova Scotia, Canada). Swiss Journal ofGeosciences, 105, 283297.Google Scholar
Abid, I.A. & Hesse, R. (2007) Illitizing fluids as precursors of hydrocarbon migration along transfer and boundary faults of the Jeanne d'Arc Basin offshore Newfoundland, Canada. Marine and Petroleum Geology, 24, 237245.CrossRefGoogle Scholar
Abid, I.A., Hesse, R. & Harper, J.D. (2004) Variations in mixed-layer illite/smectite diagenesis in the rift and post-rift sediments of the Jeanne d'Arc Basin, Grand Banks offshore Newfoundland, Canada. Canadian Journal of Earth Sciences, 41, 401429.CrossRefGoogle Scholar
Ahn, J.H. & Peacor, D.R. (1986) Transmission and analytical electron microscopy of the smectite-to-llite transition. Clays and Clay Minerals, 34, 165179.Google Scholar
Ahn, J.H. & Peacor, D.R. (1989) Illite/smectite from Gulf Coast: A reappraisal of the transmission electron microscopy images. Clays and Clay Minerals, 37, 542546.Google Scholar
Allen, P.A. & Allen, J.R. (2005) Basin Analysis. Principles and Applications. Second edition, Blackwell Publishing, Oxford, UK, 549 pp.Google Scholar
Altaner, S.P. & Ylagan, R.F. (1997) Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization. Clays and Clay Minerals, 45, 517533.Google Scholar
Altaner, S.P., Whitney, G., Aronson, J.L. & Hower, J. (1984) A model for K-bentonite formation, evidence from zoned K-bentonites in the disturbed bed of Montana. Geology, 12, 412415.2.0.CO;2>CrossRefGoogle Scholar
Arostegui, J., Irabien, M.J. & Nieto, F. (2001) Microtextures and the origin of muscovite-kaolinite intergrowths in sandstones of the Utrillas Formation, Basque Cantabrian Basin, Spain. Clays and Clay Minerals, 49, 529539.Google Scholar
Arostegui, J., Sangüesa, F.J., Nieto, F. & Uriarte, J.A. (2006) Thermal models and clay diagenesis in the Tertiary-Cretaceous sediments of the Alava block (Basque-Cantabrian basin, Spain). Clay Minerals, 41, 791809.CrossRefGoogle Scholar
Bauluz, B., Peacor, D.R. & González López, J.M. (2000) Transmission electron microscopy study of illitization in pelites from the Iberian Range, Spain, layer-by-layer replacement. Clays and Clay Minerals, 48, 374384.CrossRefGoogle Scholar
Cuadros, J. (2006) Modeling of smectite illitization in burial diagenesis environments. Geochimica et Cosmochimica Acta, 70, 41811195.CrossRefGoogle Scholar
De Ros, L.F. (1998) Heterogeneous generation and evolution of diagenetic quartzarenites in the Silurian-Devonian Fumas Formation of the Paran Basin, southern Brazil. Sedimentary Geology, 116, 99128.Google Scholar
del Papa, C., Hongn, F., Petrinovic, I. & Domínguez, R. (2004) Evidencias de deformación pre-miocena media asociada al antepaís andino en la Cordillera Orienta. (24°35'S-66°12'O). AsociaciónGeológica Argentina, Revista, 59, 506509.Google Scholar
del Papa, C., Hongn, F., Powell, J., Payrola, P., Do Campo, M., Strecker, M.P., Petrinovic, I., Schmitt, A. & Pereyra, R. (2013) Middle Eocene-Oligocene broken foreland evolution in the Andean Calchaqui Valley, NW Argentina: insights from stratigraphic, structural, and provenance studies. Basin Research, 25, 574593.CrossRefGoogle Scholar
Díaz, J.I. & Malizzia, D.C. (1983) Estudio geológico y sedimentológico del Terciario superior del Valle Calchaquí (Departamento de San Carlos, Prov. De Salta). Boletín Sedimentológico, 2, 828.Google Scholar
Do Campo, M., del Papa, C., Jiménez-Millán, J. & Nieto, F. (2007) Clay mineral assemblages and analcime formation in a Paleogene fluvial-lacustrine sequence (Maiz Gordo Formation) from Northwestern Argentina. Sedimentary Geology, 201, 5674.CrossRefGoogle Scholar
Do Campo, M., del Papa, C., Nieto, F., Hongn, F. & Petrinovic, I. (2010) Integrated analysis for constraining palaeoclimatic and volcanic influences on clay-mineral assemblages in orogenic basins (Paleogene Andean foreland, Northwestern Argentina). Sedimentary Geology, 228, 98112.Google Scholar
Do Campo, M., Nieto, F., del Papa, C. & Hongn, F. (2014) Syn- and post-sedimentary controls on clay minerals assemblages in a tectonically active basin, Andean Argentinean Foreland. Journal of South American Earth Sciences, 52: 4356.Google Scholar
Dong, H. & Peacor, D.R. (1996) TEM observations of coherent stacking relations in smectite, I-S and illite of shales: evidence for McEwan relations in crystallites and dominance of 2M1 polytypism. Clays and Clay Minerals, 44, 257275.CrossRefGoogle Scholar
Dong, H., Peacor, D.R. & Freed, R.L. (1997) Phase relations among smectite, R1 illite-smectite, and illite. American Mineralogist, 82, 379391.CrossRefGoogle Scholar
Dorsey, R.J., Buchovencky, E.J. & Lundberg, N. (1988) Clay mineralogy of Pliocene-Pleistocene mudstones, eastern Taiwan: Combined effects of burial diagenesis and provenance unroofing. Geology, 16, 944947.2.3.CO;2>CrossRefGoogle Scholar
Drief, A. & Nieto, F. (2000) Chemical composition of smectites formed in clastic sediments. Implications for the smectite-illite transformation. Clay Minerals, 35, 665678.CrossRefGoogle Scholar
Ferrage, E., Vidal, O., Mosser-Ruck, R., Cathelineau, M. & Cuadros, J. (2011) A reinvestigation of smectite illitization in experimental hydrothermal conditions: Results from X-ray diffraction and transmission electron microscopy. American Mineralogist, 96, 207223.CrossRefGoogle Scholar
Guzmán, S. & Petrinovic, I. (2008) Pucarilla-Cerro Tipillas Volcanic Complex: the oldest recognized caldera in the southeastern portion of Central Volcanic Zone of Central Andes? Collapse Calderas Workshop IOP Conference Series. Earth and Environmental Science, 3,012003. IOP Publishing. doi:10.1088/1755-1307/3/ 1/012003.CrossRefGoogle Scholar
Hoffman, J. & Hower, J. (1979) Clay mineral assemblages as low grade metamorphic geothermometers: Application to the thrust faulted Disturbed Belt of Montana, U. S. A. Pp. 55—79 in: Aspect ofDiagenesis (P.A. Scholle & P.S. Schluger, editors). Special Publication 26, Society of Economic Paleontologists and Mineralogists, Tulsa, Oklahoma, USA.Google Scholar
Hongn, F., del Papa, C.E., Powell, J., Petrinovic, I.A., Mon, R. & Deraco, V. (2007) Middle Eocene deformation and sedimentation in the Puna-Eastern Cordillera transition (23°-26°S): Control by preexisting heterogeneities on the pattern of initial Andean shortening. Geology, 35, 271274.CrossRefGoogle Scholar
Hower, J., Eslinger, E.V., Hower, M.E. & Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediments: Mineralogical and chemical evidence. Geological Society of America Bulletin, 87, 725737.2.0.CO;2>CrossRefGoogle Scholar
Huang, W.-L., Longo, J.M. & Pevear, D.R. (1993) An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer. Clays and Clay Minerals, 41, 162177.CrossRefGoogle Scholar
Jiang, W.-T., Peacor, D.R., Merriman, R.J. & Roberts, B. (1990) Transmission and analytical electron micro-scopic study of mixed-layer illite-smectite formed as an apparent replacement product of diagenetic illite. Clays and Clay Minerals, 38, 449468.CrossRefGoogle Scholar
Kim, J.W., Peacor, D.R., Tessier, D. & Elsass, F. (1995) A technique for maintaining texture and permanent expansion of smectite interlayers for TEM observations. Clays and Clay Minerals, 43, 5157.CrossRefGoogle Scholar
Marquillas, R., del Papa, C. & Sabino, I. (2005) Sedimentary aspects and paleo-environmental evolution of a rift basin: Salta Group (Cretaceous-Paleogene), northwestern Argentina. International Journal of Earth Sciences, 94, 94113.CrossRefGoogle Scholar
Marrett, R.A., Allmendiger, R.W., Alonso, R.N. & Drake, R.E. (1994) Late Cenozoic tectonic evolution of the Puna plateau and adjacent foreland, northwestern Argentine Andes. Journal of South American Earth Science, 7, 179208.Google Scholar
Middleton, A.W., Tonguc, I. Uysal, S. & Golding, D. (2015) Chemical and mineralogical characterisation of illite-smectite: Implications for episodic tectonism and associated fluid flow, central Australia. Geochimica et Cosmochimica Acta, 148, 284303.CrossRefGoogle Scholar
Moore, D.M. & Reynolds, R.C. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, UK.Google Scholar
Nieto, F., Ortega-Huertas, M., Peacor, D.R. & Arostegui, J. (1996) Evolution of illite/smectite from shallow diagenesis through incipient metamorphism in sedi-ments of the Basque-Cantabrian Basin. Clays and Clay Minerals, 44, 304323.CrossRefGoogle Scholar
Pollastro, R.M. (1993) Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays and Clay Minerals, 41, 119133.CrossRefGoogle Scholar
Salfity, J.A. & Marquillas, R.A. (1994) Tectonic and sedimentary evolution of the Cretaceous-Eocene Salta Group Basin, Argentina. Pp. 266315 in: Cretaceous Tectonics of the Andes (J.A. Salfity, editor). Earth Evolution Sciences Monograph Series, Friedrich Vieweg & Sohn, Braunschweig/ Wiesbaden, Germany.Google Scholar
Sant'Anna, L.G., Clauer, N., Cordani, U.G., Riccomini, C., Velázquez, V.F. & Liewig, N. (2006) Origin and migration timing of hydrothermal fluids in sedimentary rocks of the Paraná Basin, South America. Chemical Geology, 230, 121.CrossRefGoogle Scholar
Schegg, R. & Leu, W. (1996) Clay mineral diagenesis and thermal history of the Thonex Well, Western Swiss Molasse Basin. Clays and Clay Minerals, 44, 693705.CrossRefGoogle Scholar
Shau, Y.-H., Peacor, D.R. & Essene, E.J. (1990) Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM, AEM, EMPA, XRD and optical studies. Contributions to Mineralogy and Petrology, 105, 123142.CrossRefGoogle Scholar
Turner, J.C. (1959) Estratigrafía del cordón de Escaya y de la sierra de Rinconada (Jujuy). Revista de la Asociación Geológica Argentina, 13, 1539.Google Scholar
Turner, J.C.M. (1960) Estratigrafía de la Sierra de Santa Victoria y adyacencias. Boletín Academia Nacional de Ciencias de Cordoba, 41, 163196.Google Scholar
Uysal, I.T., Glikson, M., Golding, S.D. & Audsley, F. (2000) The thermal history of the Bowen Basin, Queensland, Australia: Vitrinite reflectance and clay mineralogy of Late Permian coal measures. Tectonophysics, 323, 105129.Google Scholar
Veblen, D.R., Guthrie, G.D. Jr, Livi, K.J.T. & Reynolds, R.C. Jr. (1990) High-resolution transmission electron microscopy and electron diffraction of mixed-layer illite/smectite: Experimental results. Clays and Clays Minerals, 38, 113.Google Scholar
Whitney, G. (1990) Role of water in the smectite-to-illite reaction. Clays and Clay Minerals, 38, 343350.CrossRefGoogle Scholar
Whitney, G. & Northrop, H.R. (1988) Experimental investigation of the smectite to illite reaction: Dual reaction mechanisms and oxygen-isotope systematics. American Mineralogist, 73, 7790.Google Scholar
Whitney, D.L. & Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187.CrossRefGoogle Scholar