Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T23:45:16.642Z Has data issue: false hasContentIssue false

Sorption and transformation of phenols on clay surfaces: effect of exchangeable cations

Published online by Cambridge University Press:  09 July 2018

P. J. Isaacson
Affiliation:
Connecticut Agricultural Experiment Station, Box 1106, 123 Huntington Street. New Haven, CT06504, USA
B. L. Sawhney
Affiliation:
Connecticut Agricultural Experiment Station, Box 1106, 123 Huntington Street. New Haven, CT06504, USA

Abstract

The sorption and transformation of phenol, 2-methylphenol, 3-methylphenol, 2,6-dimethylphenol, 3,5-dimethylphenol, and 2,4,6-trimethylphenol, by homoionic Na-, H-, Ca-, Cu-, Al-, and Fe(III)-montmorillonite from both vapour and aqueous phases were examined by IR spectroscopy. All the phenols were sorbed by the clays but were modified to different degrees depending on the exchangeable cations and on the amount and type of alkyl substitution of the phenols. Sorption of 2,6-dimethylphenol from aqueous solution was irreversible, and the extent of sorption followed the order Fe- > Al- > Cu- > Ca-clay. Both transition and non-transition metal cations were effective in transforming the phenol sorbates and heating the clay/phenol complexes further enhanced transformation. The results are discussed in terms of the nature of the transformation products and the likely role of radical reactions in their formation.

Resume

Resume

On a étudié par spectroscopie infra-rouge l'adsorption et la transformation de phénol, 2-méthylphénol, 3-méthylphénol, 2,6-diméthylphénol, 3,5-dyméthylphénol et 2,4,6-tri-méthylphénol par des montmorillonites homoïoniques Na, H, Ca, Cu, Al et Fe(III) aussi bien à partir de phases vapeur que de solutions aqueuses. Tous les phénols sont adsorbés par les argiles, mais sont modifiés à divers degrés en fonction du cation échangeable, du degré et du type de substitution des phenols. L'adsorption du 2,6 diméthylphénol à partir de solutions aqueuses est irréversible et la quantité adsorbée est liée aux cations échangeables selon l'ordre Fe > Al > Cu > Ca. Tous les cations permettent de transformer les phénols adsorbés qu'il transition ou non; en chauffant des complexes argiles/phénols on accroît la transformation. Les résultats sont discutés en fonction de la nature des produits de transformation et du rôle des réactions radicalaires lors de leur transformation.

Kurzreferat

Kurzreferat

Mit Hilfe yon Infrarotspektroskopie wird die Sorption und Umwandlung von Phenol, 2-Methylphenol, 3-Methylphenol, 2,6-Dimethylphenol, 3,5-Dimethylphenol und 2,4,6-Trimethylphenol an homoionischen Na-, H-, Ca, Cu-, Al- und Fe(III)-Montmorilloniten sowohl aus der Gas- als auch aus der wäßrigen Phase untersucht. Alle Phenole werden vom Ton sorbiert: in Abhängigkeit vom austauschbaren Kation und dem Ausmaß und der Art der Alkylsubstitution der Phenole werden sie in unterschiedlicher Weise verändert. Die Sorption yon 2,6-Dimethylphenol aus wäßriger Lösung war irreversibel, und das Ausmaß der Sorption nahm in der Reihenfolge Fe > Al- > Cu- > Ca-Ton ab. Alle Metallkationen verstärkten die Umwandlung der Phenoladsorbate, die durch Erhitzen des Ton Phenol Komplexes noch beschleunigt wurde. Die Ergebnisse der Untersuchungen werden in Verbindung mit der Art der Umwandlungsprodukte und der möglichen Rolle von Radikalreaktionen bei ihrer Bildung diskutiert.

Resumen

Resumen

Se ha estudiado por espectroscopia IR, la adsorción y transformación de fenol, 2-metilfenol, 3-metilfenol, 2,6-dimetilfenol, 3,5-dimetilfenol y 2,4,6-trimetilfenol por montmorillonitas homoiónicas (Na+, H+, Ca2+, Al3+ y Fe3+) tanto en fase vapor como en disolución acuosa. Todos los fenoles son adsorbidos por la arcilla aunque en diferente grado, dependiendo de los cationes de cambio y del tipo de sustitución alquílica en los fenoles. La adsorción del 2,6-dimetilfenol en solución acuosa es un proceso irreversible, y la cantidad adsorbida depende del catión de cambio, siguiendo el orden: Fe > Al > Cu > Ca. Tanto los cationes de metales de transición como los de no-transición producen transformaciones en los fenoles adsorbidos, favorecidas por el aumento de la temperatura. Los resultados se discuten en función de la naturaleza de los productos de transformación y del probable papel que juegan radicales orgánicos en las citadas reacciones.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artiola-Fortuny, J. & Fuller, W.H. (1982) Adsorption of some monohydroxybenzene derivatives by soils. Soil Sci. 133, 1826.CrossRefGoogle Scholar
Bertier, G., Pullman, B. & Pontis, J. (1952) Recherches théoriques sur les constantes de force et les fréquences de vibration du groupement carbonyle dans les molecules organiques conjuguees. J. Chim. Phys. 49, 367376.CrossRefGoogle Scholar
Callahan, M.A., Slimak, M.W., Gabel, N.W., May, I.P., Fowler, C.F., Freed, J.R., Jennings, P., Durfee, R.L., Whitmore, F.C., Maestri, B., Mabey, W.R., Holt, B.R. & Gould, C. (1979) Water-related environmental fate of 129 priority pollutants. 1. EPA-440/4-79-029a. U.S. Environmental Protection Agency, Washington.Google Scholar
Chapman, P.M., Romberg, G.P. & Vigers, G.A. (1982) Design of monitoring studies for priority pollutants. J. Water Pollution Control Federation 54, 292297.Google Scholar
Cloos, P., Moreale, A., Broers, C. & Badot, C. (1979) Adsorption and oxidation of aniline and p-chloroaniline by montmorillonite. Clay Miner. 14, 307321.CrossRefGoogle Scholar
Cook, C.D. (1953) Oxidation of hindered phenols. I. Oxidation of and oxidation inhibition by 2,6- di-t-butyl-4-methylphenol. J. Org. Chem. 18, 261266.CrossRefGoogle Scholar
Cook, C.D., Nash, N.G. & Flanagan, H.R. (1955) Oxidation of hindered phenols. III. The rearrangements of the 2,6-di-t-butyl-4-methyl-phenoxy radical. J. Am. Chem. Soc. 77, 17831785.CrossRefGoogle Scholar
Cosgrove, S.L. & Waters, W.A. (1951) The oxidation of phenols with benzoyl peroxide. Part II. Chem. Soc. J. 388391.CrossRefGoogle Scholar
Fenn, D.B., Mortland, M.M. & Pinnavaia, T.J. (1973) The chemisorption of anisole on Cu(II) hectorite. Clays Clay Miner. 21, 315322.CrossRefGoogle Scholar
Friedlander, H.Z., Saldick, J. & Frink, C.R. (1963) Electron spin resonance spectra in various clay minerals. Nature 199, 6162.CrossRefGoogle Scholar
Horner, L. & Weber, K-H. (1967) Darstellungen und Eigenschaften weiterer Chinone des Biphenyls. Chem. Ber. 100, 28422853.CrossRefGoogle Scholar
Larson, R.A. & Hufnal, J.M. (1980) Oxidative polymerization of dissolved phenols by soluble and insoluble inorganic species. Limnol. Oceanogr. 25, 505512.CrossRefGoogle Scholar
McBride, M.B., Pinnavaia, T.J. & Mortland, M.M. (1977) Adsorption of aromatic molecules by clays in aqueous suspension. Adv. Environ. Sci. Technol. 8, 145154.Google Scholar
Mortland, M.M. & Halloran, L.J. (1976) Polymerization of aromatic molecules on smectite. Soil Sci. Soc. Am. J. 40, 367370.CrossRefGoogle Scholar
Musso, H. & Pietsch, H. (1967) Zur Struktur von 3.3'-Dihydroxy-diphenochinonen. Chem. Ber. 100, 28542869.CrossRefGoogle Scholar
Pinnavaia, T.J., Hall, P.L., Cady, S.C. & Mortland, M.M. (1974) Aromatic radical cation formation on the intracrystal surfaces of transition metal layer lattice silicates. J. Phys. Chem. 78, 994999.CrossRefGoogle Scholar
Pouchert, C.J. (editor) (1978) Aldrich Library of Infrared Spectra. 2nd Edition. Aldrich Chemical Co. Inc., Milwaukee, Wisconsin.Google Scholar
Raghavan, N.V. & Steenken, S. (1980) Electrophilic reaction of the OH radical with phenol. Determination of the distribution of isomeric dihydroxycyclohexadienyl radicals. J. Am. Chem. Soc. 102, 34953499.CrossRefGoogle Scholar
Saltzman, S. & Yariv, S. (1975) Infrared study of the sorption of phenol and p-nitrophenol by montomorillonite. Soil Sci. Soc. Am. Proc. 39, 474479.CrossRefGoogle Scholar
Thompson, T.D. & Moll, W.F. (1973) Oxidative power of smectites measured by hydroquinone. Clays Clay Miner. 21, 337350.CrossRefGoogle Scholar
Walling, C, Camaioni, D.M. & Kim, S.S. (1978) Aromatic hydroxylation by peroxydisulfate. J. Am. Chen. Soc. 100, 48144818.CrossRefGoogle Scholar
Wang, T.S.C, Li, S.W. & Ferng, Y.L. (1978) Catalytic polymerization of phenolic compounds of clay minerals. Soil Sci. 126, 1521.CrossRefGoogle Scholar
Wauchope, R.D. & Haque, R. (1971) ESR in clay minerals. Nature, Phys. Sci. 233, 141142.CrossRefGoogle Scholar
Weismiller, R.A., Ahlrichs, J.L. & White, J.L. (1967) Infrared studies of hydroxyaluminum interlayer material. Soil Sci. Soc. Am. Proc. 31, 459463.CrossRefGoogle Scholar
Wood, J.M. (1982) Chlorinated hydrocarbons: oxidation in the biosphere. Environ. Sci. Technol. 16, 291A297A.CrossRefGoogle ScholarPubMed