Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T15:18:13.421Z Has data issue: false hasContentIssue false

Weathering, sedimentary and diagenetic controls of mineral and geochemical characteristics of the vertebrate-bearing Silesian Keuper

Published online by Cambridge University Press:  27 February 2018

J. Środoń*
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences – Research Centre in Kraków, ul. Senacka 1, 31-002 Kraków, Poland
J. Szulc
Affiliation:
Jagiellonian University, Institute of Geological Sciences, Oleandry 2a, 30-063 Kraków, Poland
A. Anczkiewicz
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences – Research Centre in Kraków, ul. Senacka 1, 31-002 Kraków, Poland
K. Jewuła
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences – Research Centre in Kraków, ul. Senacka 1, 31-002 Kraków, Poland Chemostrat Ltd, Unit 1 Ravenscroft Court, Buttingcross Ind. Estate, Welshpool, Powys, SY21 8SL, UK
M. Banaś
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences – Research Centre in Kraków, ul. Senacka 1, 31-002 Kraków, Poland
L. Marynowski
Affiliation:
Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland

Abstract

Mudstones and claystones from the southern marginal area of the European Upper Triassic, midcontinental Keuper basin (Silesia, southern Poland) were investigated using XRD, organic and inorganic geochemistry, SEM, K-Ar of illite-smectite, AFT, and stable isotopes of O and C in carbonates in order to unravel the consequent phases of the geological history of these rocks, known for abundant fossils of land vertebrates, and in particular to evaluate the diagenetic overprint on the mineral composition. The detected and quantified mineral assemblage consists of quartz, calcite, dolomite, Ca-dolomite, illite, mixed-layer illite-smectite, and kaolinite as major components, plus feldspars, hematite, pyrite, chlorite, anatase, siderite, goethite as minor components. Palygorskite, gypsum, jarosite and apatite were identified in places.

The K-Ar dates document a post-sedimentary thermal event, 164 Ma or younger, which resulted in partial illitization of smectite and kaolinite. The maximum palaeotemperatures were estimated from illite-smectite as ∼125°C. Apatite fission track data support this conclusion, indicating a 200–160 Ma age range of the maximum temperatures close to 120°C, followed by a prolonged period of elevated temperatures. These conclusions agree well with the available data on the Mesozoic thermal event, which yielded Pb-Zn deposits in the area. Organic maturity indicators suggest the maximum palaeotemperatures <110°C.

Palygorskite was identified as authigenic by crystal morphology (TEM), and calcite by its accumulation in soil layers and by its isotopic composition evolving with time, in accordance with the sedimentary and/or climatic changes. Dolomite isotopic composition indicates more saline (concentrated) waters. Palygorskite signals a rapid local change of sedimentary conditions, correlated with algal blooms. This assemblage of authigenic minerals indicates an arid climate and the location at the transition from a distal alluvial fan to mudflat.

Fe-rich smectite, kaolinite, and hematite were products of chemical weathering on the surrounding lands and are therefore mostly detrital components of the investigated rocks. Kaolinite crystal morphology and ordering indicates a short transport distance. Hematite also crystallized in situ, in the soil horizons. A large variation in kaolinite/2:1 minerals ratio reflects hydraulic sorting, except of the Rhaetian, where it probably signals a climatic change, i.e. a shift in the weathering pattern towards kaolinite, correlated with the disappearance of hematite. Quartz, 2M1 illite, and minor feldspars and Mg-chlorite were interpreted as detrital minerals. The documented sedimentation pattern indicates that in more central parts of the Keuper playa system, where an intense authigenesis of the trioctahedral clays (chlorite, swelling chlorite, corrensite, sepiolite) took place, illite and smectite were the dominant detrital clay minerals.

Cr/Nb and Cr/Ti ratios were found as the best chemostratigraphic tools, allowing for the correlation of all investigated profiles. A stable decrease of these ratios up the investigated sedimentary sequence is interpreted as reflecting changes in the provenance pattern from more basic to more acidic rocks.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anczkiewicz, A., Środoń, J. & Zattin, M. (2013) Thermal history of the Podhale basin in the Internal Western Carpathians from the perspective of apatite fission track analyses. Geologica Carpathica, 64, 151161.CrossRefGoogle Scholar
Armenteros, I., Bustillo, M.A.A. & Blanco, J.A. (1995) Pedogenic and groundwater processes in a closed Miocene basin (northern Spain). Sedimentary Geology, 99, 1736.Google Scholar
Barbarand, J., Carter, A., Wood, I. & Hurford, T. (2003) Compositional and structural control of fission-track annealing in apatite. Chemical Geology, 198, 107137.CrossRefGoogle Scholar
Barbera, G., Mazzoleni, P., Critelli, S., Pappalardo, A., Lo Giudice, A. & Cirrincione, R. (2006) Provenance of shales and sedimentary history of the Monte Soro Unit, Sicily. Periodico di Mineralogia, 75, 313330.Google Scholar
Barshad, I. (1966) The effect of variation in precipitation on the nature of clay mineral formation in soils from acid and basic rocks. Proceedings of the International. Clay Conference, Jerusalem, 1, 167173.Google Scholar
Botor, D., Papiernik, B., Mackowski, T., Reicher, B., Machowski, G. & Górecki, W. (2012) The thermal history of the Carboniferous source rocks in the Moravian-Silesian Unit, Fore-sudetic Monocline, Poland. 74th EAGE Conference & Exhibition incorporating SPE EUROPEC 2012, Copenhagen, Denmark, 4–7 June 2012.CrossRefGoogle Scholar
Brański, P. (2011) Clay mineral composition in the Triassic and Jurassic deposits from the Polish Basin – a record of palaeoclimatic and palaeoenvironmental changes. Biuletyn Państwowego Instytutu Geologicznego, 444, 1532.(in Polish).Google Scholar
Brański, P. (2014) Climatic disaster at the Triassic-Jurassic boundary – a clay minerals and major elements record from the Polish Basin. Geological Quarterly, 58 (in press, doi: 10.7306/gq.1161)Google Scholar
Braun, J., Van der Beek, P. & Batt, G. (2008) Quantitative Thermochronology. Cambridge University Press.Google Scholar
Brindley, G.W. & Brown, G. (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society Monograph No. 5, London.Google Scholar
Bzowska, G. & Racka, M. (2006) Kajper Krasiejowa okiem geochemika i mineraloga. Gospodarka Surowcami Mineralnymi, 22, zeszyt specjalny 3, 355358.Google Scholar
Chaffee, M.A., Eppinger, R.G., Lason, K., Slosarz, J. & Podemski, M. (1994) The Myszków porphyry copper-molybdenum deposit, Poland. International Geology Review, 36, 947960.Google Scholar
Deczkowski, Z. (1977) Geology of the Permo-Mesozoic cover and its basement in the eastern part of the fore- Sudetic monocline (Kalisz-Częstochowa area). Prace Instytutu Geologicznego, 82, 63 pp.Google Scholar
Donelick, R.A., Sullivan, P.B. & Ketcham, R.A. (2005) Apatite fission-track analysis. Revue of Mineralogy and Geochemistry, 58, 4994.Google Scholar
Dunkl, I. (2002) TRACKKEY: A Windows program for calculation and graphical presentation of fission track data. Computer Geoscience, 28, 312.Google Scholar
Dzik, J., Sulej, T., Kaim, A. & Niedźwiedzki, R. (2000) Późnotriasowe cmentarzysko kręgowców śladowych w Krasiejowie na Śląsku Opolskim. Przegląd Geologiczny, 48, 226235.Google Scholar
Feist-Burkhardt, S., Götz, A., Szulc, J., Borkhataria, R., Geluk, M., Haas, J., Hornung, J., Jordan, P., Kempf, G., Michalík, J., Nawrocki, J., Reinhardt, L., Ricken, W., Röhling, H.G., Rüffer, T., Török, Á. & Zühlke, R. (2008) Triassic. Pp. 1–73 in: The Geology of Central Europe, 2. Mesozoic and Cenozoic (T. McCann, editor). The Geological Society of London.Google Scholar
Gajewska, I. (1997) Charakterystyka osadów piaskowca trzcinowego na Niżu Polskim. Kwartalnik Geologiczny, 17, 507515.Google Scholar
Galbraith, R.F. (1981) On statistical models for fission track counts. Mathematical Geology, 13, 471438.Google Scholar
Galbraith, R.F. (1990) The radial plot; graphical assessment of spread in ages. Nuclear Tracks and Radiation Measurements, 17, 207214.CrossRefGoogle Scholar
Galbraith, R.F. & Laslett, G.M. (1993) Statistical models for mixed fission track ages. Nuclear Tracks and Radiation Measurements, 21, 459470.Google Scholar
Green, P.F. (1981) A new look at statistics in fissiontrack dating. Nuclear Tracks, 5, 7786.CrossRefGoogle Scholar
Grodzicka-Szymanko, W. (1993) Trias górny. Prace Instytutu Geologicznego, 83, 105111.Google Scholar
Gruszka, B. & Zieliński, T. (2008) Evidence for a very low-energy fluvial system: a case study from the dinosaur-bearing Upper Triassic rocks of Southern Poland. Geological Quarterly, 52, 239252.Google Scholar
Heijlen, W., Muchez, P., Banks, D.A., Schneider, J., Kucha, H. & Keppens, E. (2003) Carbonate-hosted Zn-Pb deposits in Upper Silesia, Poland: Origin and evolution of mineralizing fluids and constraints on genetic models. Economic Geology, 98, 911932.Google Scholar
Heuser, M., Andrieux, P., Petit, S. & Stanjek, H. (2013) Iron-bearing smectites: a revised relationship between structural Fe, b cell edge lengths and refractive indices. Clay Minerals, 48, 97103.Google Scholar
Jackson, M.L. (1975) Soil Chemical Analysis – Advanced Course. Published by the author, Madison, Wisconsin.Google Scholar
Jarvis, I. & Jarvis, K.E. (1992) Inductively coupled plasma-atomic emission spectrometry in exploration geochemistry. Pp. 22–56 in: Analytical Methods in Geochemical Exploration (G.E.M. Hall & B. Vaughlin, editors). Journal of Geochemical Exploration Special Issue.Google Scholar
Jeans, C.V. (2006) Clay mineralogy of the Permo- Triassic strata of the British Isles: onshore and offshore. Clay Minerals, 41, 309354.Google Scholar
Jeans, C.V., Mitchell, J.G., Scherer, M. & Fisher, M.J. (1994) Origin of Permo-Triassic clay mica assemblage. Clay Minerals, 29, 575589.CrossRefGoogle Scholar
Jeans, C.V., Fisher, M.J. & Merriman, R.J. (2005) Origin of the clay mineral assemblages in the Germanic facies of the English Trias: application of the spore colour index method. Clay Minerals, 40, 115129.Google Scholar
Johnsson, M.J., Ellen, S.D. & McKittrick, M.A. (1993) Intensity and duration of chemical weathering: an example from soil clays of the southeastern Koolau Mountains, Oahu, Hawaii. Geological Society of America Special Paper, 284, 147170.Google Scholar
Ketcham, R.A. (2005) Forward and inverse modeling of low-temperature thermochronometry data. Pp. 275–314 in: Low-Temperature Thermochronology: Techniques, Interpretations, and Applications (P.W. Reiners & T.A. Ehlers, editors). Review in Mineralogy and Geochemistry, 58, Mineralogical Society of America, Washington D.C.Google Scholar
Ketcham, R.A., Carter, A., Donelick, R.A., Barbarand, J. & Hurford, A.J. (2007) Improved modeling of fission-track annealing in apatite. American Mineralogist, 92, 799810.Google Scholar
Knudsen, A.C. & Gunter, M.E. (2006) Sedimentary phosphorites – an example: Phosphoria Formation, southeastern Idaho, U.S.A. Pp. 363–389 in: Phosphates: Geochemical, Geobiological, and Materials Importance (M.J. Kohn, J. Rakovan & J.M. Hughes, editors). Reviews in Mineralogy and Geochemistry, 48, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Kozłowski, A. (1995) Origin of Zn-Pb ores in the Olkusz and Chrzanów districts: a model based on fluid inclusions. Acta Geologica Polonica, 45, 83141.Google Scholar
Kozłowski, A. & Górecka, E. (1993) Sphalerite origin in the Olkusz mining district: a fluid inclusion model. Geological Quarterly, 37, 291306.Google Scholar
Krum, H. (1969) A scheme of clay mineral stability in sediments, based on clay mineral distribution in Triassic sediments of Europe. Proceedings of the International Clay Conference, Tokyo, 313–324.Google Scholar
Lintnerová, O., Michalik, J., Uhlík, P. & Soták, J. (2013) Latest Triassic climate humidification and kaolinite formation (Western Carpathians, Tatric Unit of the Tatra Mts.). Geological Quarterly, 57, 701728.Google Scholar
Lippman, F. (1956) Clay minerals from the Röt member of the Triassic near Göttingen, Germany. Journal of Sedimentary Petrology, 26, 125139.Google Scholar
Marek, S. & Pajchlowa, M. (1997) The epicontinental Permian and Mesozoic in Poland. Prace Polskiego Instytutu Geologicznego, 153, 452 pp.Google Scholar
Marynowski, L. & Wyszomirski, P. (2008) Organic geochemical evidences of early diagenetic oxidation of the terrestrial organic matter during the Triassic arid and semi arid climatic conditions. Applied Geochemistry, 23, 26122618.CrossRefGoogle Scholar
Marynowski, L., Zatoń, M., Rakociński, M., Filipiak, P., Kurkiewicz, S. & Pearce, T.J. (2012) Deciphering the upper Famennian Hangenberg Black Shale depositional environments based on multi-proxy record. Palaeogeography, Palaeoclimatology, Palaeoecology, 346/347, 6686.Google Scholar
Motzer, W.E. (2005) Chemistry, geochemistry, and geology of chromium and chromium compounds. Pp. 23–91 in: Chromium (VI) Handbook (J. Guertin, J.A. Jacobs, & C.P. Avakian, editors), CRC Press, USA.Google Scholar
Orłowska-Zwolińska, T. (1983) Palinostratygrafia epikontynentalnych osadów wyższego triasu w Polsce. Prace Instytutu Geologicznego, 104, 189.Google Scholar
Pan, Y. & Fleet, M.E. (2002) Compositions of the apatitegroup minerals: substitution mechanisms and controlling factors. Pp. 13–49 in: Phosphates: Geochemical, Geobiological, and Materials Importance (M.J.Kohn, J. Rakovan & J.M. Hughes, editors). Reviews in Mineralogy and Geochemistry, 48, Mineralogical Society of America, Washington, DC.Google Scholar
Paul, J., Wemmer, K. & Ahrendt, H. (2008) Provenance of siliciclastic sediments (Permian to Jurassic) in the Central European Basin. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 159, 641650.Google Scholar
Peters, K.E., Walters, C.C. & Moldowan, J.M. (2005) The Biomarker Guide. Vol. 2, Cambridge University Press, 1155 pp.Google Scholar
Ratcliffe, K.T., Wright, A.M. & Schmidt, K. (2012) Application of inorganic whole-rock geochemistry to shale resource plays: an example from the Eagle Ford Shale Formation, Texas. The Sedimentary Record, 10, 49.Google Scholar
Reinhardt, L. & Ricken, W. (2000) The stratigraphic and geochemical record of Playa Cycles: monitoring a Pangaean monsoon-like system (Triassic, Middle Keuper, S. Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 161, 205227.Google Scholar
Retallack, G. (1997) A Color Guide to Paleosols. John Wiley & Sons, Chichester.Google Scholar
Ruffell, A., McKinley, J.M. & Worden, R.H. (2002) Comparison of clay mineral stratigraphy to other proxy paleoclimate indicators in the Mesozoic of NW Europe. Philosophical Transactions of the Royal Society of London, A360, 675693.CrossRefGoogle Scholar
Ruttenberg, K.C. & Berner, R.A. (1993) Authigenic apatite formation and burial in sediments from nonupwelling continental margin environments. Geochimica et Cosmochimica Acta, 57, 9911007.Google Scholar
Shaw, D.M. (1968) A review of K-Rb fractionation trends by covariance analysis. Geochimica et Cosmochimica Acta, 32, 573601.Google Scholar
Shutov, V.D., Aleksandrova, A.V. & Losievskaya, S.A. (1970) Genetic interpretation of the polymorphism of the kaolinite group in sedimentary rocks. Sedimentology, 15, 6982.Google Scholar
Środoń, J. (1981) X-ray identification of randomly interstratified illite/smectite in mixtures with discrete illite. Clay Minerals, 16, 297304.Google Scholar
Środoń, J. (1984) X-ray powder diffraction identification of illitic materials. Clays and Clay Minerals, 32, 337349.Google Scholar
Środoń, J. (2007) Illitization of smectite and history of sedimentary basins. Proceedings of the 11th EUROCLAY Conference, Aveiro, Portugal, 74–82.Google Scholar
Środoń, J. (2010) Evolution of boron and nitrogen content during illitization of bentonites. Clays and Clay Minerals, 58, 743756.Google Scholar
Środoń, J. & Kawiak, T. (2012) Mineral compositional trends, petrophysical and well logging parameters, and the composition of pore water in clastic rocks from shallow burial (Miocene of the Carpathian Foredeep, SE Poland) revealed by QUANTA+BESTMIN analysis. Clays and Clay Minerals, 60, 6375.Google Scholar
Środoń, J. & McCarty, D.K. (2008) Surface area and layer charge of smectite from CEC and EGME/H2O retention measurements. Clays and Clay Minerals, 56, 155174.Google Scholar
Środoń, J. & Paszkowski, M. (2011) Role of clays in diagenetic history of boron and nitrogen in the Carboniferous of Donbas (Ukraine). Clay Minerals, 46, 561582.CrossRefGoogle Scholar
Środoń, J., Drits, V.A., McCarty, D.K., Hsieh, J.C.C. & Eberl, D.D. (2001) Quantitative XRD analysis of clay-rich rocks from random preparations. Clays and Clay Minerals, 49, 514528.Google Scholar
Środoń, J., Clauer, N., Banaś, M. & Wójtowicz, A. (2006) K-Ar evidence for a Mesozoic thermal event superimposed on burial diagenesis of the Upper Silesia Coal Basin. Clay Minerals, 41, 671692.Google Scholar
Środoń, J., Zeelmaekers, E. & Derkowski, A. (2009) The charge of component layers of illite-smectite in bentonites and the nature of end-member illite. Clays and Clay Minerals, 57, 649671.Google Scholar
Środoń, J., Drygant, D.M., Anczkiewicz, A.A. & Banaś, M. (2013) Thermal history of the Silurian in the Podolia segment of the SW margin of the East European Craton inferred from combined XRD, KAr, and AFT data. Clays and Clay Minerals, 61, 107132.Google Scholar
Stanley, D.J. & Wingerath, J.G. (1996) Nile sediment dispersal altered by the Aswan High Dam: the kaolinite trace. Marine Geology, 133, 19.Google Scholar
Suggate, R.P. (1998) Relations between depth of burial, vitrinite reflectance and geothermal gradient. Journal of Petroleum Geology, 21, 532.Google Scholar
Sweeney, J.J. & Burnham, A.K. (1990) Evaluation of a simple model of vitirinite reflectance based on chemical kinetics. The American Association of Petroleum Geologists Bulletin, 74, 15591570.Google Scholar
Świdrowska, J., Hakenberg, M., Poluhtovič, B., Seghedi, A. & Višnâkov, I. (2008) Evolution of the Mesozoic basins on the southwestern edge of the East European Craton (Poland, Ukraine, Moldova, Romania). Studia Geologica Polonica, 130, 3130.Google Scholar
Szulc, J. (2000) Middle Triassic evolution of the northern peri-Tethys area as influenced by early opening of the Tethys ocean. Annales Societatis Geologorum Poloniae, 70, 148.Google Scholar
Szulc, J. (2005) Sedimentary environments of the vertebrate-bearing Norian deposits from Krasiejow, Upper Silesia (Poland). Halleschs Jahrbuch fur Geowisschenschaften, B19, 161170.Google Scholar
Szulc, J. & Racki, G. (2014) Formacja grabowska – podstawowa jednostka litostratygraficzna kajpru Gó rnego Śląska. Przegląd Geologiczny, 62, (in print).Google Scholar
Szulc, J., Gradziński, M., Lewandowska, A. & Heunisch, C. (2006) The Upper Triassic crenogenic limestones in Upper Silesia (southern Poland) and their paleoenvironmental context. Geological Society of America Special Paper, 416, 133151.Google Scholar
Taylor, S.R. & McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell Scientific.Google Scholar
Taylor, S.R. & McLennan, S.M. (1995) The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241265.Google Scholar
Tari, G., Poprawa, P. & Krzywiec, P. (2012) Silurian lithofacies and paleogeography in Central and Eastern Europe: implications for shale gas exploration. SPE 151606, 111.Google Scholar
Veizer, J., Bruckschen, P., Pawelleka, F., Diener, A., Podlaha, O.G., Carden, G.A.F., Jasper, T., Korte, C., Strauss, H., Azmy, K. & Ala, D. (1997) Oxygen isotope evolution of Phanerozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 132, 159172.Google Scholar
Wagner, G., & Van den Haute, P. (1992) Fission-Track Dating. Kluwer Acad., Dordrecht, 285 pp.Google Scholar
Wiewióra, A. & Wyrwicki, R. (1977) Minerały ilaste triasu gó rnego okolic Kluczborka. Geological Quarterly, 21, 269278.Google Scholar
Williams, L., Środoń, J., Huff, W., Clauer, N. & Hervig, R. (2013) Light element distributions (N, B, Li) in Baltic Basin bentonites record organic sources. Geochimica et Cosmochimica Acta, 120, 582599.Google Scholar
Wilson, M.J. (2013) Sheet Silicates: Clay Minerals. The Geological Society, London, 724 pp.Google Scholar
Worden, R.H. (2006) Dawsonite cement in the Triassic Lam Formation, Shabwa Basin, Yemen: A natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction. Marine and Petroleum Geology, 23, 6177.Google Scholar
Wyszomirski, P. & Muszyń ski, M. (2007) Charakterystyka mineralogiczno-surowcowa przerostów i wtrąceńw czerwonych kopalinach ilastych triasu północnego obrzeżenia Gór Świętokrzyskich. Gospodarka Surowcami Mineralnymi, 23, 528.Google Scholar
Zatoń, M., Piechota, A. & Sienkiewicz, E. (2005) Late Triassic charophytes around bone-bearing bed at Krasiejów (SW Poland) – palaeoecological and environmental remarks. Acta Geologica Polonica, 55, 283293.Google Scholar
Ziegler, P.A. (1990) Geological Atlas of Western and Central Europe. Shell Internationale Petroleum Maatschappij, The Hague.Google Scholar
Supplementary material: File

Środon et al. supplementary material

Table 1

Download Środon et al. supplementary material(File)
File 423.4 KB
Supplementary material: File

Środon et al. supplementary material

Table 2

Download Środon et al. supplementary material(File)
File 294.9 KB