Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T23:28:52.607Z Has data issue: false hasContentIssue false

Why are clay minerals small?

Published online by Cambridge University Press:  09 July 2018

A. Meunier*
Affiliation:
Hydrasa, Bât. Sciences Naturelles, Université De Poitiers, 40 Avenue Recteur Pineau, 86022 Poitiers Ce

Abstract

The most abundant silicates formed under the Earth's 'normal' surface conditions, i.e. clay minerals, are always of small grain size. Under the same conditions, other mineral species such as carbonates, sulphates and oxides may form much bigger crystals. The reason why phyllosilicates formed in soils or in weathered rocks are always of small grain size is not related to the low-temperature-pressure conditions but rather to particular aspects of their crystal structure. Many recently published works describe the order-disorder cation distribution in the tetrahedral and octahedral sheets and the crystal defects in the layer stacks. Related to the Periodic Bond Chains (PBCs) theory, these data suggest that the size and the shape of clay crystallites could depend on the amount of crystal defects in the three axes of symmetry [100], [10] and [0]. The accumulation of crystal defects poisons the crystal growth along one, two or three PBCs. Then, nucleation becomes less energy-consuming than crystal growth and favours the formation of numerous smaller crystals rather than fewer bigger ones.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amelinckx, S. (1952) La croisssance hélicoïdale de cristaux de biotite. Comptes Rendues de l'Académie des Sciences, Paris, 234, 971—973.Google Scholar
Balan, E., Allard, T., Boizot, B., Morin, G. & Muller, J.P. (1999) Structural Fe3+ in natural kaolinites: New insights from electron paramagnetic resonance spectra fitting at X and Q-band frequencies. Clays and Clay Minerals, 47, 605—616.CrossRefGoogle Scholar
Baronnet, A. (1972) Growth mechanisms and polytypism in synthetic hydroxyl-bearing phlogopite. American Mineralogist, 57, 1271—1293.Google Scholar
Bickmore, B.R., Bosbach, D., Hochella, M.F. Jr. Charlet, L. & Rufe, E. (2001) In situ atomic force study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms. American Mineralogist, 86, 411—423.Google Scholar
Bickmore, B.R., Nagy, K.L., Sandlin, P.E. & Crater, T.S. (2002) Quantifying surface areas by atomic force microscopy. American Mineralogist, 87, 780—783.CrossRefGoogle Scholar
Brindley, G.W. & Brown, G. (editors) (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Monograph 5, Mineralogical Society, London.Google Scholar
Brindley, G.W., Kao, C.C., Harrison, J.L., Lipsicas, M. & Raythatha, R. (1986) Relation between structural disorder and other characteristics of kaolinite and dickites. Clays and Clay Minerals, 34, 239—249.Google Scholar
Cuadros, J., Sainz Diaz, C.I., Ramirez, R. & Hernandez Laguna, A. (1999) Analysis of Fe segregation in the octahedral sheet of bentonitic illite-smectite by means of FT-IR, 27A1 MAS NMR and reverse Monte Carlo simulations. American Journal of Science, 299, 289—308.CrossRefGoogle Scholar
Dove, M.T., Thayaparam, S., Heine, V. & Hammonds, K. (1996) The phenomenon of low Al/Si ordering temperatures in aluminosilicate framework structures. American Mineralogist, 81, 349—362.Google Scholar
Drits, V.A., Lindgreen, H., Sakharov, B.A. & Salyn, A.S. (1997) Sequence structure transformation of illitesmectite- vermiculite during diagenesis of Upper Jurassic shales, North Sea. Clay Minerals, 33, 351—371.Google Scholar
Ferrage, E. (2004) Etude expérimentale de l'hydratation des smectites par simulation des raies 001 de diffraction des rayons X. Implications pour l'étude d'une perturbation thermique sur la minéralogie de l'argilite du site Meuse-Haute Marne. PhD thesis University of Grenoble 1, France, 321 pp.Google Scholar
Ferrage, E., Lanson, B., Sakharov, B.A. & Drits, V.A. (2005) Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns. Part I. Montmorillonite hydration properties. American Mineralogist, 90, 1358—1374.Google Scholar
Giiven, N. (2001) Mica structure and fibrous growth of illite. Clays and Clay Minerals, 49, 189—196.Google Scholar
Hartman, P. (1973) Structure and morphology. Pp. 367—402.in: Crystal Growth: an Introduction (Hartman, P. editor). North-Holland Publications, Amsterdam.Google Scholar
Inoue, A. & Kitagawa, R. (1994) Morphological characteristics of illitic clay minerals from a hydrothermal system. American Mineralogist, 79, 700—711.Google Scholar
Kasama, T., Murakami, T., Kohyama, N. & Watanabe, T. (2001) Experimental mixtures of smectite and rectorite: Re-investigation of ‘fundamental particles’ and ‘interparticle diffraction'. American Mineralogist, 86, 105—114.Google Scholar
Laird, D.A. (1996) Model for the crystalline swelling of 2:1 phyllosilicates. Clays and Clay Minerals, 44, 553—559.CrossRefGoogle Scholar
Laird, D.A. (1999) Layer charge influences on the hydration of expandable 2:1 phyllosilicates. Clays and Clay Minerals, 47, 630—636.Google Scholar
Lanson, B. & Meunier, A. (1995) La transformation des interstratifiés ordonnés (S > 1) illite-smectite en illite dans les séries diagénétiques. Etat des connaissances et perspective. Bulletin des Centres de Recherche et d'Exploration-Production Elf Aquitaine, 19, 149—165.Google Scholar
Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabère, A. & Meunier, A. (2002) Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay Minerals, 37, 1—22.CrossRefGoogle Scholar
Manceau, A., Schlegel, M.L., Nagy, K.L. & Charlet, L. (1999) Evidence of the formation of trioctahedral clay upon sorption of Co2+ on quartz. Journal of Colloid and Interface Science, 220, 181—197.Google Scholar
Méring, J. (1975) Smectites. Pp. 97—119.in: Soil Components. Volume 2 Inorganic Components (Gieseking, J.E. editor), Springer-Verlag, Berlin.Google Scholar
Meunier, A., Lanson, B. & Beaufort, D. (2000) Vermiculitization of smectite interfaces and illite layer growth as a possible dual model for I-S illitization in diagenetic environments: a synthesis. Clay Minerals, 35, 573—586.Google Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York.Google Scholar
Muller, J.P., Manceau, A., Callas, G., Allard, T., Ildefonse Ph. & Hazemann, J.L. (1995) Crystal chemistry of kaolinite and Fe-Mn oxides: relationship with formation conditions in low-temperature systems. American Journal of Science, 297, 393—417.Google Scholar
Nadeau, P.H., Wilson, M.J., McHardy, W.J. & Tait, J.M. (1984) Interstratified clays as fundamental particles. Science, 225, 923—925.Google Scholar
Nagy, K.L. (1994) Application of morphological data obtained using scanning force microscopy to quantification of fibrous illite growth rates. Pp. 204—239.in: Scanning Probe Microscopy of Clay Minerals (Nagy, K.L. & A.E Blum editors). CMS Workshop lectures, vol. 7. The Clay Minerals Society, Bloomington, Indiana.Google Scholar
Nagy, K.L. & Blum, A.E. (editors) (1994) Scanning Probe Microscopy of Clay Minerals. CMS Workshop lectures, vol. 7. The Clay Minerals Society, Bloomington, Indiana.Google Scholar
Nakasawa, H., Yamada, H. & Fujita, T. (1992) Crystal synthesis of smectite applying very high pressure and temperature. Applied Clay Science, 6, 395—401.Google Scholar
Nespolo, M. (2001) Perturbative theory of mica polytypism role of the M2 layer in the formation of inhomogeneous polytypes. Clays and Clay Minerals, 49, 1—23.Google Scholar
Palin, E.J. & Dove, M.T. (2004) Investigation of Al/Si ordering in tetrahedral phyllosilicate sheets by Monte Carlo simulation. American Mineralogist, 89, 176—184.CrossRefGoogle Scholar
Palin, E.J., Dove, M.T., Redfern, S.A.T., Bosenick, A., Sainz-Diaz, C.I. & Warren, M.C. (2001) Computational study of tetrahedral Al-Si ordering in muscovite. Physics and Chemistry of Minerals, 28, 534—544.CrossRefGoogle Scholar
Palin, E.J., Dove, M.T., Redfern, S.A.T., Sainz-Diaz, C.I. & Lee, W.T. (2003) Computational study of tetrahedral Al-Si and octahedral Al-Mg ordering in phengite. Physics and Chemistry of Minerals, 30, 293—304.Google Scholar
Petit, S. & Decarreau, A. (1990) Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites. Clay Minerals, 25, 181—196.CrossRefGoogle Scholar
Plançon, A. (2001) Order-disorder in clay mineral structures. Clay Minerals, 36, 114.Google Scholar
Rainer, D., Scheidegger, A.M., Manceau, A., Schlegel, M., Baeyens, B., Brabury, M.H. & Morales, M. (2002) Neoformation of Ni phyllosilicate upon Ni uptake on montmorillonite: a kinetics study by powder and polarized extended X-ray absorption fine structure spectroscopy. Geochimica et Cosmochimica Acta, 66, 2335—2347.Google Scholar
Reynolds, R.C. Jr. (1992) X-ray diffraction studies of illite/smectite from rocks, <1 μm randomly oriented powders, and <1 μm oriented powder aggregates: the absence of laboratory-induced artifacts. Clays and Clay Minerals, 40, 387—396.Google Scholar
Sainz Diaz, C.I., Cuadros, J. & Hernandez Laguna, A. (2001) Analysis of cation distribution in the octahedral sheet of dioctahedral 2:1 phyllosilicates by using inverse Monte Carlo methods. Physics and Chemistry of Minerals, 28, 445—454.Google Scholar
Sato, H., Yamagashi, A. & Kawamura, K. (2001) Molecular simulation for flexibility of a single clay layer. Journal of Physical Chemistry, B 105, 7990—7997.Google Scholar
Schlegel, M.L., Manceau, A., Charlet, L., Chateigner, D. & Hazemann, J.L. (2001) Sorption of metalions on clay minerals. Nucleation and epitaxial growth of Zn phyllosilicate on the edges of hectorite. Geochimica et Cosmochimica Acta, 65, 4155—4170.Google Scholar
Schilling, T. & Frenkel, D. (2004) Self-poisoning of crystal nuclei in hard-rod liquids. Journal of Physics: Condensed Matter, 16, S2029S2036.Google Scholar
Sunagawa, I. & Koshino, Y. (1975) Growth spirals on kaolin group minerals. American Mineralogist, 60, 407—412.Google Scholar
Sunagawa, I., Koshino, Y., Asakura, M. & Yamamoto, T. (1975) Growth mechanisms of some clay minerals. Fortschritt Minéralogie, 52, 217—224.Google Scholar
Vantelon, D., Pelletier, M., Michot, L.J., Barres, O. & Thomas, F. (2001) Fe, Mg and Al distribution in the octahedral sheet of montmorillonites. An infrared study in the OH-bending region. Clay Minerals, 36, 369—379.Google Scholar
Vantelon, D., Montarges-Pelletier, E., Michot, J.L., Briois, V., Pelletier, M. & Thomas, F. (2003) Iron distribution in the octahedral sheet of dioctahedral smectites. An Fe-edge X-ray absorption spectroscopy study. Physics and Chemistry of Minerals, 30, 44—53.Google Scholar
White, G.N. & Zelazny, L.W. (1988) Analysis and implications of the edge structure of dioctahedral phyllosilicates. Clays and Clay Minerals, 36, 141—146.CrossRefGoogle Scholar
Yoder, H.S. & Eugster, H.P. (1955) Synthetic and natural muscovites. Geochimica et Cosmochimica Acta, 8, 225—280.CrossRefGoogle Scholar
Zbik, M. & Smart, R. (1998) Nanomorphology of kaolinites: comparative SEM and AFM studies. Clays and Clay Minerals, 46, 153—160.CrossRefGoogle Scholar