Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T15:08:52.455Z Has data issue: false hasContentIssue false

Adsorption of Lippia multiflora essential oil on two surfactant-modified clays: qualitative approach

Published online by Cambridge University Press:  08 September 2020

Soumahoro Gueu*
Affiliation:
Institut National Polytechnique Félix Houphouët-Boigny – Laboratoire des Procédés Industriels de Synthèse, de l'Environnement et des Energies Nouvelles (LAPISEN), BP 1093 Yamoussoukro, Ivory Coast
Vama Etienne Tia
Affiliation:
Université Peleforo Gon Coulibaly de Korhogo, UFR Sciences Biologiques, Département de Biochimie, BP 1328 Korhogo, Ivory Coast
Danièle Bartier
Affiliation:
GeoRessources UMR 7359, Université de Lorraine, CNRS, Campus Aiguillettes, 54500 Vandœuvre-lès-Nancy, France
Odile Barres
Affiliation:
GeoRessources UMR 7359, Université de Lorraine, CNRS, Campus Aiguillettes, 54500 Vandœuvre-lès-Nancy, France
Fatogoma Dolourou Soro
Affiliation:
Université Peleforo Gon Coulibaly de Korhogo, UFR Sciences Biologiques, Département de Biochimie, BP 1328 Korhogo, Ivory Coast

Abstract

This paper deals with the adsorption of an essential oil (EO) on a kaolinite-rich clay and a smectite-rich clay. The two clays were modified with a quaternary alkyl ammonium surfactant to create a lipophilic environment for better adsorption of the EO. The preparation of the clay/EO hybrids avoided the use of a slurry and organic solvent. The selected EO was that of Lippia multiflora. This EO has insecticidal properties. The surfactant was trioctyl methylammonium (TOMA). The modified clays were characterized by X-ray diffraction (XRD) and infrared (IR) spectroscopy. The smectite-rich clay displayed greater adsorption of the L. multiflora EO compared to the kaolinite-rich clay. The interlayer space of the kaolinite-rich clay was not affected by the adsorption of the TOMA and/or EO molecules, which suggests that the adsorption in this clay took place on the external surface. By contrast, a significant increase in the interlayer space of the smectite-rich clay was observed, suggesting that the adsorption process of TOMA and/or EO took place on both the external and internal surfaces. The IR analysis showed that the surfactant loading in the interlayer space of the smectite-rich clay introduces a gauche conformation in the alkyl chains. A formulation mixing this local smectite-rich clay and the L. multiflora EO has potential for the manufacture of new biopesticides.

Type
Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Chun-Hui Zhou

References

Argyropoulou, C., Daferera, D., Tarantilis, P.A., Fasseas, C. & Polissiou, M. (2007) Chemical composition of the essential oil from leaves of Lippia citriodora H.B.K. (Verbenaceae) at two developmental stages. Biochemical Systematics and Ecology, 35, 831837.CrossRefGoogle Scholar
Baba Moussa, F., Koumaglo, K., Ayedoun, A., Akpagana, K., Moudachirou, M. & Bouchet, P. (1997) Antifungal activity of essential oils extracted in the African states of Togo and Benin. Cryptogamie Mycologie (France), 18, 165168.Google Scholar
Bassolé, I.H.N., Lamien-Meda, A., Bayala, B., Tirogo, S., Franz, C., Novak, J. et al. (2010) Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha × piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination. Molecules, 15, 78257839.CrossRefGoogle ScholarPubMed
Boulogne, I., Petit, P., Ozier-Lafontaine, H., Desfontaines, L. & Loranger-Merciris, G. (2012) Insecticidal and antifungal chemicals produced by plants: a review. Environmental Chemistry Letters, 10, 325347.CrossRefGoogle Scholar
Brindley, G.W. & Brown, G. (1980) Quantitative X-ray mineral analysis of clays. Crystal Structures of Clay Minerals and Their X-Ray Identification, 5, 411438.Google Scholar
Carrión-Prieto, P., Martín-Ramos, P., Maria, T.M.R., Hernández-Navarro, S., Garrido-Laurnaga, F., Eusébio, M.E.S. & Martín-Gil, J. (2017) Vibrational and thermal studies of essential oils derived from Cistus ladanifer and Erica arborea shrubs. Natural Product Communications, 12, 119122.CrossRefGoogle ScholarPubMed
Cui, H., Chen, J., Yang, H., Wang, W., Liu, Y., Zou, D. et al. (2013) Preparation and application of Aliquat 336 functionalized chitosan adsorbent for the removal of Pb (II). Chemical Engineering Journal, 232, 372379.CrossRefGoogle Scholar
Daoudi, E.M., Boughaleb, Y., El Gaini, L., Meghea, I. & Bakasse, M. (2013) Modeling of alkyl quaternary ammonium cations intercalated into montmorillonite lattice. Materials Research Bulletin, 48, 18241829.CrossRefGoogle Scholar
Giannakas, A., Tsagkalias, I., Achilias, D.S. & Ladavos, A. (2017) A novel method for the preparation of inorganic and organo-modified montmorillonite essential oil hybrids. Applied Clay Science, 146, 362370.CrossRefGoogle Scholar
Goletti, N.M.M. (2012) Formulation of powder insecticides by adsorption of the essential oils of Xylopia aethiopica and Ocimum gratissimum on modified Cameroonian clays. PhD thesis between National School of Chemistry of Montpelier and the University of Ngaoundere.Google Scholar
Gueu, S., Finqueneisel, G., Zimny, T., Bartier, D. & Yao, B.K. (2019) Physicochemical characterization of three natural clays used as adsorbent for the humic acid removal from aqueous solution. Adsorption Science & Technology, 37, 7794.Google Scholar
Heinz, H., Vaia, R.A., Krishnamoorti, R. & Farmer, B.L. (2007) Self-assembly of alkylammonium chains on montmorillonite: effect of chain length, head group structure, and cation exchange capacity. Chemistry of Materials, 19, 5968.CrossRefGoogle Scholar
Holtzapffel, T. (1985) Clays minerals: Preparation, diffractometric analysis and determination. Société Géologique du Nord, 12, 1136.Google Scholar
Jim, S., Wudeneh, L., Mariana, S. & Dan, A. (2001) Agribusiness in sustainable natural African plant product: Lippia tea. PhD thesis. Center for New Use Agriculture and Natural Plant Products.Google Scholar
Juliani, H.R., Simon, J.E., Quansah, C., Asare, E., Akromah, R., Acquaye, D. et al. (2008) Chemical diversity of Lippia multiflora essential oils from West Africa. Journal of Essential Oil Research, 20, 4955.CrossRefGoogle Scholar
Keita, S.M., Vincent, C., Schmit, J.-P., Arnason, J.T. & Bélanger, A. (2001) Efficacy of essential oil of Ocimum basilicum L. and O. gratissimum L. applied as an insecticidal fumigant and powder to control Callosobruchus maculatus. Journal of Stored Products Research, 37, 339349.CrossRefGoogle ScholarPubMed
Kinninmonth, M.A., Liauw, C.M., Verran, J., Taylor, R., Edwards-Jones, V., Shaw, D. & Webb, M. (2013) Investigation into the suitability of layered silicates as adsorption media for essential oils using FTIR and GC–MS. Applied Clay Science, 83–84, 415425.CrossRefGoogle Scholar
Mishra, R.K., Rout, P.C., Sarangi, K. & Nathsarma, K.C. (2011) Solvent extraction of Fe (III) from the chloride leach liquor of low grade iron ore tailings using Aliquat 336. Hydrometallurgy, 108, 9399.Google Scholar
Nakhli, A., Mbouga, M.G.N., Bergaoui, M., Khalfaoui, M., Cretin, M. & Huguet, P. (2018) Modeling of essential oils adsorption onto clays towards a better understanding of their interactions. Journal of Molecular Liquids, 249, 132143.CrossRefGoogle Scholar
Nguemtchouin, M.G.M., Ngassoum, M.B., Chalier, P., Kamga, R., Ngamo, L. S. & Cretin, M. (2013) Ocimum gratissimum essential oil and modified montmorillonite clay, a means of controlling insect pests in stored products. Journal of Stored Products Research, 52, 5762.CrossRefGoogle Scholar
Nguemtchouin, M.G.M., Ngassoum, M.B., Kamga, R., Deabate, S., Lagerge, S., Gastaldi, E. et al. (2015) Characterization of inorganic and organic clay modified materials: an approach for adsorption of an insecticidal terpenic compound. Applied Clay Science, 104, 110118.CrossRefGoogle Scholar
Nguemtchouin, M.M.G., Ngassoum, M.B., Ngamo, L.S.T., Gaudu, X. & Cretin, M. (2010). Insecticidal formulation based on Xylopia aethiopica essential oil and kaolinite clay for maize protection. Crop Protection, 29, 985991.Google Scholar
Nguemtchouin, M.M.G., Ngassoum, M.B., Ngamo, L.S.T., Mapongmetsem, P.M., Sieliechi, J., Malaisse, F. et al. (2009) Adsorption of essential oil components of Xylopia aethiopica (Annonaceae) by kaolin from Wak, Adamawa province (Cameroon). Applied Clay Science, 44, 16.CrossRefGoogle Scholar
Noudem, J.A., Mbouga, M.N., Kaptso, K.G., Khalfaoui, M. & Noumi, G.B. (2017) Saponins-clay modified materials: a new approach against Callosobruchus subinnotatus in stored products. International Journal of Scientific and Technological Research, 6, 134141.Google Scholar
Nukenine, E.N., Monglo, B., Awasom, I., Tchuenguem, F.F.N. & Ngassoum, M.B. (2002) Farmers’ perception on some aspects of maize production, and infestation levels of stored maize by Sitophilus zeamais in the Ngaoundere region of Cameroon. Cameroon Journal of Biological and Biochemical Sciences, 12, 1830.Google Scholar
Oladimeji, F.A., Orafidiya, O.O., Ogunniyi, T.A.B. & Adewunmi, T.A. (2000) Pediculocidal and scabicidal properties of Lippia multiflora essential oil. Journal of Ethnopharmacology, 72, 305311.CrossRefGoogle ScholarPubMed
Pélissier, Y., Marion, C., Casadebaig, J., Milhau, M., Kone, D., Loukou, G. et al. (1994) A chemical, bacteriological, toxicological and clinical study of the essential oil of Lippia multiflora Mold.(Verbenaceae). Journal of Essential Oil Research, 6, 623630.Google Scholar
Rajkumar, P., Selvaraj, S., Suganya, R., Velmurugan, D., Gunasekaran, S. & Kumaresan, S. (2018) Vibrational and electronic spectral analysis of thymol an isomer of carvacrol isolated from Trachyspermum ammi seed: a combined experimental and theoretical study. Chemical Data Collections, 15–16, 1031.Google Scholar
Schulz, H., Schrader, B., Quilitzsch, R. & Steuer, B. (2002) Quantitative analysis of various citrus oils by ATR/FT-IR and NIR-FT Raman spectroscopy. Applied Spectroscopy, 56, 117124.CrossRefGoogle Scholar
Soro, L., Grosmaire, L., Ocho-Anin Atchibri, A., Munier, S., Menut, C. & Pelissier, Y. (2015) Variabilité de la composition chimique de l'huile essentielle des feuilles de Lippia multiflora cultivées en Côte d'Ivoire. Journal of Applied Biosciences, 88, 81808193.CrossRefGoogle Scholar
Tia, E.V., Lozano, P., Menut, C., Lozano, Y.F., Martin, T., Niamké, S. & Adima, A.A. (2013) Potentiality of essential oils in biological control against whitefly Bemisia tabaci Genn. Phytothérapie, 11, 3138.CrossRefGoogle Scholar
Xi, Y., Frost, R.L. & He, H. (2007) Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl, and trialkyl methyl ammonium bromides. Journal of Colloid and Interface Science, 305, 150158.CrossRefGoogle ScholarPubMed
Yarou, B.B., Silvie, P., Komlan, F.A., Mensah, A., Alabi, T., Verheggen, F. & Francis, F. (2017) Pesticide plants and protection of vegetable crops in West Africa (bibliographical synthesis). Biotechnologie, Agronomie, Société et Environnement, 21, 288304.Google Scholar
Zhu, L., Zhu, R., Xu, L. & Ruan, X. (2007) Influence of clay charge densities and surfactant loading amount on the microstructure of CTMA-montmorillonite hybrids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 304, 4148.CrossRefGoogle Scholar
Zsirka, B., Horváth, E., Makó, É., Kurdi, R. & Kristóf, J. (2015) Preparation and characterization of kaolinite nanostructures: reaction pathways, morphology and structural order. Clay Minerals, 50, 329340.Google Scholar