Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T08:00:32.316Z Has data issue: false hasContentIssue false

Adsorption of phenanthrene by stevensite and sepiolite

Published online by Cambridge University Press:  02 January 2018

D.E. González-Santamaría
Affiliation:
Departamento de Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco s/n. 28049, Madrid, Spain
E. López
Affiliation:
Departamento de Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco s/n. 28049, Madrid, Spain
A. Ruiz
Affiliation:
Departamento de Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco s/n. 28049, Madrid, Spain
R. Fernández
Affiliation:
Departamento de Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco s/n. 28049, Madrid, Spain
A. Ortega
Affiliation:
Departamento de Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco s/n. 28049, Madrid, Spain
J. Cuevas*
Affiliation:
Departamento de Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco s/n. 28049, Madrid, Spain

Abstract

Polycyclic aromatic hydrocarbons are increasingly widespread pollutants introduced into the environment via oil spillage and incomplete anthropogenic combustion of fossil fuels. In this work, the capacity of stevensite and sepiolite to adsorb phenanthrene (PHE) has been evaluated experimentally by batch testing. Both clay minerals are distributed widely in the Madrid Basin, are of low cost and can be applied with minimal environmental impact. In the context of few previous studies, adsorption isotherms have been developed to understand the adsorption mechanisms and were fitted to the Freundlich and linear models with virtually the same results. Although stevensite showed greater adsorption capacity than sepiolite, the isotherms were constructed for equilibrium concentrations up to 0.8–1.0 mg/L due to the low solubility of PHE in water. When compared to other adsorbents the ability of stevensite to retain PAHs should be examined further in order to add and complement novel functions in reactive barriers.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benhammou, A., Yaacoubi, A., Nibou, L. & Tanouti, B. (2005a) Study of the removal of mercury (II) and chromium (VI) from aqueous solutions by Moroccan stevensite. Journal of Hazardous Materials, 117, 243249.CrossRefGoogle ScholarPubMed
Benhammou, A., Yaacoubi, A., Nibou, L. & Tanouti, B. (2005b) Adsorption of metal ions onto Moroccan stevensite: kinetic and isotherm studies. Journal of Colloid and Interface Science, 282, 320326.CrossRefGoogle ScholarPubMed
Bohn, H., McNeal, B. & Occonor, G. (1993) Química del Suelo. Pp. 147148. Limusa, México, D.F.Google Scholar
Bowman, B.T. & Sans, W.W. (1985) Partitioning behaviour of insecticides in soil-water systems: I. Adsorbent concentration effects 1. Journal of Evironment Quality, 14, 265.Google Scholar
Brigatti, M.F., Galán, E. & Theng, B.K.G. (2006) Structures and mineralogy of clay minerals. Pp. 1985 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Elsevier, Amsterdam.CrossRefGoogle Scholar
Carmo, A., Hundal, L. & Thompson, M. (2000) Sorption of hydrophobic organic compounds by soil materials: Application of unit equivalent Freundlich coefficients. Environmental Science & Technology, 34, 43634369.Google Scholar
Changchaivong, S. & Khaodhiar, S. (2009) Adsorption of naphthalene and phenanthrene on dodecylpyridinium-modified bentonite. Applied Clay Science, 43, 317321.Google Scholar
Churchman, G.J., Gates, W.P., Theng, B.K.G. & Yuan, G. (2006) Clays and clays minerals for pollution control. Pp. 625675 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Elsevier, Amsterdam.Google Scholar
Cobas, M., Ferreira, L., Sanromán, M.A. & Pazos, M. (2014) Assessment of sepiolite as a low-cost adsorbent for phenanthrene and pyrene removal: Kinetic and equilibrium studies . Ecological Engineering, 70, 287294.Google Scholar
Cruz-Guzmán, M. (2007) La contaminación de los suelos y aguas. Su prevención con nuevas sustancias naturales. Pp. 8283. Universidad de Sevilla, Sevilla, Spain.Google Scholar
Cuevas, J., Pelayo, M., Rivas, P. & Leguey, S. (1993) Characterization of Mg-clays from the Neogene of the Madrid Basin and their potential as backfilling and sealing material in high level nuclear waste disposal. Applied Clay Science, 7, 383406.Google Scholar
Cuevas, J., De La Villa, R., Ramirez, S., Petit, S., Meunier, A. & Leguey, S. (2003) Chemistry of Mg smectites in lacustrine sediments from the Vicalvaro sepiolite deposit, Madrid Neogene Basin (Spain). Clays and Clay Minerals, 51, 457472.Google Scholar
de Maagd, P., ten Hulscher, D., van den Heuvel, H., Opperhuizen, A. & Sijm, D. (1998) Physicochemical properties of polycyclic aromatic hydrocarbons: aqueous solubilities, n-octanol/water partition coefficients, and Henry's law constants. Environmental Toxicology and Chemistry, 17, 251.Google Scholar
De Santiago, C., Suárez, M., Garcia Romero, E. & Doval, M. (2000) Mg-rich smectite “precursor” phase in the Tagus Basin, Spain. Clays and Clay Minerals, 48, 366373.Google Scholar
Environmental Protection Agency (EPA) (1980) Water quality criteria document for polynuclear aromatic hydrocarbons. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, United States of America.Google Scholar
European Union (EU) (2000) Directive 2000/60/EC of the European Parliament and of the council of 23 October, 2000. Establishing a framework for community action in the field of water policy. European Union.Google Scholar
Helmy, A.K. & de Bussetti, S.G. (2008) The surface properties of sepiolite. Applied Surface Science, 255, 29202924.CrossRefGoogle Scholar
Huang, W., Schalautman, M.A. & Weber, W.J. (1996) A distributed reactivity model for sorption by soils and sediments. 5. The influence of near-surface characteristics in minerals domains. Environmental Science & Technology, 30, 29933000.Google Scholar
Huang, P., Li, Y. & Sumner, M. (2012) Handbook of Soil Sciences, pp. 2048, 2nd edition. CRC Press, Boca Raton, Florida, USA.Google Scholar
Hundal, L.S., Thompson, M.L., Laird, D.A. & Carmo, A.M. (2001) Sorption of phenanthrene by reference smectite. Environmental Science & Technology, 35, 34563461.Google Scholar
Jia, H., Zhao, J., Fan, X., Dilimulati, K. & Wang, C. (2012) Photodegradation of phenanthrene on cation-modified clays under visible light. Applied Catalysis B: Environmental, 123-124, 4351.Google Scholar
Jia, H., Li, L., Chen, H., Zhao, Y., Li, X., Wang, C. (2015) Exchangeable cations-mediated photodegradation of polycyclicaromatic hydrocarbons (PAHs) on smectite surface under visible light. Journal of Hazardous Materials, 287, 1623.Google Scholar
Khalid, E., Laachacha, A., Alaouib, A. & Azzic, M. (2011) Removal of methyl violet from aqueous solution using a stevensite-rich clay from Morocco. Applied Clay Science, 54, 9096.Google Scholar
Lagaly, G., Ogawa, M. & Dékány, I. (2006) Clay minerals organic interaction. Pp. 309359 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Elsevier, Amsterdam.Google Scholar
Lagaly, G., Ogawa, M. & Dékány, I. (2013) Clay minerals organic interaction. Pp. 425505 in: Handbook of Clay Science, vol. 2 (Bergaya, F. & Lagaly, G., editors). Elsevier, Amsterdam.Google Scholar
Laird, D.A. (1999) Layer charge influences on the hydration of expandable 2:1 phyllosilicates. Clays and Clay Minerals, 47, 630636.Google Scholar
Lee, S.M. & Tiwari, D. (2012) Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview. Applied Clay Science, 59-60, 84102.CrossRefGoogle Scholar
Lee, J.F., Mortland, M.M., Chiou, C.T., Kile, D.E & Boyd, S.A. (1990) Adsorption of benzene, toluene, and xylene by two tetramethylammonium-smectites having different charge densities. Clays and Clay Minerals, 38, 113120.Google Scholar
Lee, S.Y., Kim, S.J., Chung, S.Y. & Jeong, C.H. (2004) Sorption of hydrophobic organic compounds onto organoclays. Chemosphere, 55, 781785.Google Scholar
Liu, R., Frost, R.L. & Martens, W.N. (2009) Near infrared and mid infrared investigations of adsorbed phenol on HDTMAB organoclays. Materials Chemistry and Physics, 113, 707713.Google Scholar
Manoli, E. & Samara, C. (1999) Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis. TrAC Trends in Analytical Chemistry, 18, 417428.Google Scholar
McBride, M. (1994) Environmental Chemistry of Soil. Pp. 3–7, 372379. Oxford University Press, New York.Google Scholar
Meleshyn, A. & Tunega, D. (2011) Adsorption of phenanthrene on Na-montmorillonite: A model study. Geoderma, 169, 4146.Google Scholar
Piatt, J., Backhus, D., Capel, P. & Eisenreich, S. (1996) Temperature-dependent sorption of naphthalene, phenanthrene, and pyrene to low organic carbon aquifer sediments. Environmental Science & Technology, 30, 751760.Google Scholar
Qu, X.L., Zhang, Y.J., Li, H., Zheng, S.R. & Zhu, D.Q. (2011) Probing the specific sites on montmorillonite using nitroaromatic compounds and hexafluorobenzene. Environmental Science & Technology, 45, 22092216.Google Scholar
Rutherford, D., Chiou, C.T & Kile, D.E. (1992) Influence of soil organic matter composition on the partition of organic compounds. Environmental Science & Technology, 26, 336340.Google Scholar
Sawamura, S. (2000) Pressure dependence of the solubilities of anthracene and phenanthrene in water at 25°C. Journal of Solution Chemistry, 29, N°4.Google Scholar
Sheng, G.Y., Johnston, C.T., Teppen, B.J. & Boyd, S.A. (2002) Adsorption of dinitrophenol herbicides from water by montmorillonites. Clays and Clay Minerals, 50, 2534.CrossRefGoogle Scholar
Sposito, G. (2008) The Chemistry of Soils, pp. 198199. Oxford University Press, New York.Google Scholar
Suárez, M. & García-Romero, E. (2012) Variability of the surface properties of sepiolite. Applied Clay Science. 67-68, 7282.Google Scholar
Tang, Q., Wang, F., Tang, M., Liang, J. & Ren, C. (2012) Study on pore distribution and formation rule of sepiolite mineral nanomaterials. Journal of Nanomaterials, 2012, 16.Google Scholar
Warr, L.N. & Nieto, F. (1998) Crystallite thickness and defect density of phyllosilicates in low-temperature metamorphic pelites: a TEM and XRD study of clay mineral crystallinity-index standards. The Canadian Mineralogist, 36, 14531474.Google Scholar
Webb, P.A. & Orr, C. (1997) Analytical Methods in Fine Particle Technology. p. 301. Micromeritics Instruments Corporation, USA.Google Scholar
Weber, W.J. & Huang, W. (1996) A distributed reactivity model for sorption by soils and sediments. 4. Intraparticle heterogeneity and phase-distribution relationships under non equilibrium conditions. Environmental Science & Technology, 30, 881888.Google Scholar
Yuan, G.D., Theng, B.K.G., Churchman, G.J. & Gates, W.P. (2013) Clays and clay minerals for pollution control. Pp. 587644 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Elsevier, Amsterdam.Google Scholar
Zhang, L., Luo, L. & Zhang, S. (2011) Adsorption of phenanthrene and 1,3-dinitrobenzene on cation-modified clay minerals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 377, 278283.Google Scholar